Applications of the Monte Carlo method Examples

Karol Kołodziej

Institute of Physics
University of Silesia, Katowice
http://kk.us.edu.pl

The flux of neutrons with energy E_0 is incident on a homogeneous infinite plate $0 \le x \le h$. The angle of incidence is 90° . Upon collision with atoms of the plate material neutrons may be either elastically scattered or captured. Possible fates of a neutron are depicted below: (a) it either passes, (b) is captured, or (c) is reflected by the plate.

We want to calculate the probability of neutron transmission through the plate p^+ , the probability of neutron reflection by the plate p^- and the probability of neutron capture inside the plate p^0 . Let assume for simplicity that energy of a neutron is not changed in scattering and that any direction of *recoil* of a neutron from an atom is equally probable, which is actually the case in neutron collisions with heavy atoms.

We want to calculate the probability of neutron transmission through the plate p^+ , the probability of neutron reflection by the plate p^- and the probability of neutron capture inside the plate p^0 . Let assume for simplicity that energy of a neutron is not changed in scattering and that any direction of *recoil* of a neutron from an atom is equally probable, which is actually the case in neutron collisions with heavy atoms.

Interaction of neutrons with matter is characterized by two constants: the capture cross section σ_c and the scattering cross section σ_s . The sum of them called the *total cross section* σ

$$\sigma = \sigma_c + \sigma_s$$
.

We want to calculate the probability of neutron transmission through the plate p^+ , the probability of neutron reflection by the plate p^- and the probability of neutron capture inside the plate p^0 . Let assume for simplicity that energy of a neutron is not changed in scattering and that any direction of *recoil* of a neutron from an atom is equally probable, which is actually the case in neutron collisions with heavy atoms.

Interaction of neutrons with matter is characterized by two constants: the capture cross section σ_c and the scattering cross section σ_s . The sum of them called the *total cross section* σ

$$\sigma = \sigma_c + \sigma_s.$$

The physical meaning of these cross sections is as follows: the probability of neutron capture upon collision with an atom is equal to σ_c/σ and the probability of scattering is equal to σ_s/σ .

We want to calculate the probability of neutron transmission through the plate p^+ , the probability of neutron reflection by the plate p^- and the probability of neutron capture inside the plate p^0 . Let assume for simplicity that energy of a neutron is not changed in scattering and that any direction of *recoil* of a neutron from an atom is equally probable, which is actually the case in neutron collisions with heavy atoms.

Interaction of neutrons with matter is characterized by two constants: the capture cross section σ_c and the scattering cross section σ_s . The sum of them called the *total cross section* σ

$$\sigma = \sigma_c + \sigma_s.$$

The physical meaning of these cross sections is as follows: the probability of neutron capture upon collision with an atom is equal to σ_c/σ and the probability of scattering is equal to σ_s/σ .

The free path length of a neutron λ , i.e. the length of the path from one collision to another is a random variable with the probability density

$$p(x) = \sigma e^{-\sigma x}$$
.

Let us check the normalization condition, assuming that the macroscopic width of the plate h can be set ∞ .

$$\int_{0}^{\infty} p(x)dx = \sigma \int_{0}^{\infty} e^{-\sigma x} dx == \sigma \left[-\frac{1}{\sigma} e^{-\sigma x} \right]_{0}^{\infty} = \sigma \frac{1}{\sigma} e^{0} = 1,$$

The free path length of a neutron λ , i.e. the length of the path from one collision to another is a random variable with the probability density

$$p(x) = \sigma e^{-\sigma x}.$$

Let us check the normalization condition, assuming that the macroscopic width of the plate h can be set ∞ .

$$\int_{0}^{\infty} p(x)dx = \sigma \int_{0}^{\infty} e^{-\sigma x} dx == \sigma \left[-\frac{1}{\sigma} e^{-\sigma x} \right]_{0}^{\infty} = \sigma \frac{1}{\sigma} e^{0} = 1,$$

Similarly, let us find the expectation value of λ

$$\mathbf{M}\lambda = \sigma \int_{0}^{\infty} x e^{-\sigma x} dx = \left\{ \begin{array}{l} u = x \implies du = dx \\ dv = e^{-\sigma x} dx \implies v = -\frac{1}{\sigma} e^{-\sigma x} \end{array} \right\}$$
$$= \sigma \left[-\frac{x}{\sigma} e^{-\sigma x} \Big|_{0}^{\infty} + \frac{1}{\sigma} \int_{0}^{\infty} e^{-\sigma x} dx \right] = -\frac{1}{\sigma} e^{-\sigma x} \Big|_{0}^{\infty} = \frac{1}{\sigma}.$$

The free path length of a neutron λ , i.e. the length of the path from one collision to another is a random variable with the probability density

$$p(x) = \sigma e^{-\sigma x}$$
.

Let us check the normalization condition, assuming that the macroscopic width of the plate h can be set ∞ .

$$\int_{0}^{\infty} p(x)dx = \sigma \int_{0}^{\infty} e^{-\sigma x} dx == \sigma \left[-\frac{1}{\sigma} e^{-\sigma x} \right]_{0}^{\infty} = \sigma \frac{1}{\sigma} e^{0} = 1,$$

Similarly, let us find the expectation value of λ

$$\mathbf{M}\lambda = \sigma \int_{0}^{\infty} x e^{-\sigma x} dx = \left\{ \begin{array}{l} u = x \implies du = dx \\ dv = e^{-\sigma x} dx \implies v = -\frac{1}{\sigma} e^{-\sigma x} \end{array} \right\}$$
$$= \sigma \left[-\frac{x}{\sigma} e^{-\sigma x} \Big|_{0}^{\infty} + \frac{1}{\sigma} \int_{0}^{\infty} e^{-\sigma x} dx \right] = -\frac{1}{\sigma} e^{-\sigma x} \Big|_{0}^{\infty} = \frac{1}{\sigma}.$$

Let us solve the formula for drawing λ values

$$\sigma \int_{0}^{\lambda} e^{-\sigma x} dx = \gamma,$$

where γ is the random variable uniformly distributed in the interval (0,1).

$$\sigma \left[-\frac{1}{\sigma} e^{-\sigma x} \right]_0^{\lambda} = \gamma \quad \Rightarrow \quad -e^{-\sigma \lambda} + 1 = \gamma \quad \Rightarrow \quad e^{-\sigma \lambda} = 1 - \gamma.$$

Hence

$$\lambda = -\frac{1}{\sigma} \ln(1 - \gamma).$$

However, $1-\gamma$ is also random variable uniformly distributed in the interval (0,1), the same as γ , therefore we can write

$$\lambda = -\frac{1}{\sigma} \ln \gamma.$$

Let us solve the formula for drawing λ values

$$\sigma \int_{0}^{\lambda} e^{-\sigma x} dx = \gamma,$$

where γ is the random variable uniformly distributed in the interval (0,1).

$$\sigma \left[-\frac{1}{\sigma} e^{-\sigma x} \right]_0^{\lambda} = \gamma \quad \Rightarrow \quad -e^{-\sigma \lambda} + 1 = \gamma \quad \Rightarrow \quad e^{-\sigma \lambda} = 1 - \gamma.$$

Hence

$$\lambda = -\frac{1}{\sigma} \ln(1 - \gamma).$$

However, $1-\gamma$ is also random variable uniformly distributed in the interval (0,1), the same as γ , therefore we can write

$$\lambda = -\frac{1}{\sigma} \ln \gamma.$$

We select a random direction of the neutron after scattering. As the problem is symmetric with respect to rotations about the Ox-axis, the neutron direction after k-th scattering inside the plate at the point with abscissa x_k is completely determined by the angle φ_k , as in the figure below.

We are now ready to simulate the trajectory of a neutron.

Actually, we can use the random variable $\mu_k = \cos \varphi_k$ instead, which we assume to be uniformly distributed in the interval (-1,1). Thus, we generate

$$\mu_k = \cos \varphi_k = [1 - (-1)]\gamma - 1 = 2\gamma - 1.$$

We draw the free path length

$$\lambda_k = -\frac{1}{\sigma} \ln \gamma$$

Actually, we can use the random variable $\mu_k = \cos \varphi_k$ instead, which we assume to be uniformly distributed in the interval (-1,1). Thus, we generate

$$\mu_k = \cos \varphi_k = [1 - (-1)]\gamma - 1 = 2\gamma - 1.$$

We draw the free path length

$$\lambda_k = -\frac{1}{\sigma} \ln \gamma$$

and calculate the abscissa x_{k+1} of the next collision point

$$x_{k+1} = x_k + \lambda_k \mu_k.$$

Actually, we can use the random variable $\mu_k = \cos \varphi_k$ instead, which we assume to be uniformly distributed in the interval (-1,1). Thus, we generate

$$\mu_k = \cos \varphi_k = [1 - (-1)]\gamma - 1 = 2\gamma - 1.$$

We draw the free path length

$$\lambda_k = -\frac{1}{\sigma} \ln \gamma$$

and calculate the abscissa x_{k+1} of the next collision point

$$x_{k+1} = x_k + \lambda_k \mu_k.$$

Then we check the condition of neutron transmission through the

$$x_{k+1} > h$$
.

If it is so, the computation of the trajectory is terminated and 1 is added to the counter of transmitted neutrons.

Actually, we can use the random variable $\mu_k = \cos \varphi_k$ instead, which we assume to be uniformly distributed in the interval (-1,1). Thus, we generate

$$\mu_k = \cos \varphi_k = [1 - (-1)]\gamma - 1 = 2\gamma - 1.$$

We draw the free path length

$$\lambda_k = -\frac{1}{\sigma} \ln \gamma$$

and calculate the abscissa x_{k+1} of the next collision point

$$x_{k+1} = x_k + \lambda_k \mu_k.$$

Then we check the condition of neutron transmission through the plate

$$x_{k+1} > h$$
.

If it is so, the computation of the trajectory is terminated and 1 is added to the counter of transmitted neutrons.

Otherwise we check the condition of reflection

$$x_{k+1} < 0.$$

If it is so, the computation of the trajectory is terminated and 1 is added to the counter of reflected neutrons.

If neither of the two conditions are satisfied, i.e.

$$0 \le x_{k+1} \le h,$$

which means that the neutron has undergone the (k+1)-th collision inside the plate, we choose another value of γ and check the capture condition

$$\gamma < \frac{\sigma_c}{\sigma}$$
.

Otherwise we check the condition of reflection

$$x_{k+1} < 0.$$

If it is so, the computation of the trajectory is terminated and 1 is added to the counter of reflected neutrons.

If neither of the two conditions are satisfied, i.e.

$$0 < x_{k+1} < h$$

which means that the neutron has undergone the (k+1)-th collision inside the plate, we choose another value of γ and check the capture condition

$$\gamma < \frac{\sigma_c}{\sigma}$$
.

If this inequality is satisfied, the trajectory is terminated and we add 1 to the counter of captured neutrons. Otherwise, we repeat the whole procedure for the next scattering point.

Otherwise we check the condition of reflection

$$x_{k+1} < 0.$$

If it is so, the computation of the trajectory is terminated and ${\bf 1}$ is added to the counter of reflected neutrons.

If neither of the two conditions are satisfied, i.e.

$$0 \le x_{k+1} \le h,$$

which means that the neutron has undergone the (k+1)-th collision inside the plate, we choose another value of γ and check the capture condition

$$\gamma < \frac{\sigma_c}{\sigma}$$
.

If this inequality is satisfied, the trajectory is terminated and we add 1 to the counter of captured neutrons. Otherwise, we repeat the whole procedure for the next scattering point.

Obviously, the initial values for each trajectory are

$$x_0=0, \qquad \cos \varphi_0=1.$$

After N trajectories are sampled we obtain the following results

- N⁺ neutrons were transmitted through the plate,
- N⁻ neutrons were reflected by the plate,
- \bullet N^0 neutrons were captured in it.

Obviously, the initial values for each trajectory are

$$x_0=0, \qquad \cos \varphi_0=1.$$

After N trajectories are sampled we obtain the following results

- N⁺ neutrons were transmitted through the plate,
- N⁻ neutrons were reflected by the plate,
- N^0 neutrons were captured in it.

It is obvious that the corresponding probabilities are approximately equal to

$$p^{+} = \frac{N^{+}}{N}, \qquad p^{-} = \frac{N^{-}}{N}, \qquad p^{0} = \frac{N^{0}}{N},$$

where $N = N^{+} + N^{-} + N^{0}$.

Obviously, the initial values for each trajectory are

$$x_0=0, \qquad \cos \varphi_0=1.$$

After N trajectories are sampled we obtain the following results

- N⁺ neutrons were transmitted through the plate,
- N⁻ neutrons were reflected by the plate,
- N⁰ neutrons were captured in it.

It is obvious that the corresponding probabilities are approximately equal to

$$p^{+} = \frac{N^{+}}{N}, \qquad p^{-} = \frac{N^{-}}{N}, \qquad p^{0} = \frac{N^{0}}{N},$$

where $N = N^{+} + N^{-} + N^{0}$.

Obviously, the initial values for each trajectory are

$$x_0=0, \qquad \cos \varphi_0=1.$$

After N trajectories are sampled we obtain the following results

- N⁺ neutrons were transmitted through the plate,
- N⁻ neutrons were reflected by the plate,
- N⁰ neutrons were captured in it.

It is obvious that the corresponding probabilities are approximately equal to

$$p^{+} = \frac{N^{+}}{N}, \qquad p^{-} = \frac{N^{-}}{N}, \qquad p^{0} = \frac{N^{0}}{N},$$

where $N = N^{+} + N^{-} + N^{0}$.

Here is the block scheme of the computer program for this problem

Let us consider a function g(x) defined in the interval a < x < b. We want to approximate the integral

$$I = \int_{a}^{b} g(x) dx.$$

Although this problem is not at all probabilistic, we will apply the Monte Carlo method to solve it.

Let us choose an arbitrary distribution density $p_{\xi}(x)$ specified in the interval (a,b), i.e. an arbitrary function $p_{\xi}(x)$ satisfying the conditions

$$p_{\xi}(x) > 0$$
 and $\int_{a}^{b} p_{\xi}(x) dx = 1$.

Let us consider a function g(x) defined in the interval a < x < b. We want to approximate the integral

$$I = \int_{a}^{b} g(x) dx.$$

Although this problem is not at all probabilistic, we will apply the Monte Carlo method to solve it.

Let us choose an arbitrary distribution density $p_{\xi}(x)$ specified in the interval (a,b), i.e. an arbitrary function $p_{\xi}(x)$ satisfying the conditions

$$p_{\xi}(x) > 0$$
 and $\int_{a}^{b} p_{\xi}(x) dx = 1$.

Along with the random variable ξ defined on the interval (a,b) with the density $p_{\xi}(x)$, we will need another random variable

$$\eta = \frac{g(\xi)}{p_{\xi}(\xi)}.$$

Let us calculate the expectation value of η

$$\mathbf{M}\eta = \int_{a}^{b} \left[\frac{g(x)}{p_{\xi}(x)} \right] p_{\xi}(x) dx = I.$$

Let us consider now N identical independent random variables $\eta_1, \eta_2, ..., \eta_N$ and apply the central limit theorem to their sum. Then we will obtain the relation

$$m{P}\left\{\left|rac{1}{N}\sum_{j=1}^N\eta_j-I
ight|<3\sqrt{rac{m{D}\eta}{N}}
ight\}pprox 0.997.$$

Along with the random variable ξ defined on the interval (a,b) with the density $p_{\xi}(x)$, we will need another random variable

$$\eta = \frac{g(\xi)}{p_{\xi}(\xi)}.$$

Let us calculate the expectation value of η

$$\mathbf{M}\eta = \int_{a}^{b} \left[\frac{g(x)}{p_{\xi}(x)} \right] p_{\xi}(x) dx = 1.$$

Let us consider now N identical independent random variables $\eta_1, \eta_2, ..., \eta_N$ and apply the central limit theorem to their sum. Then we will obtain the relation

$$P\left\{\left|\frac{1}{N}\sum_{j=1}^{N}\eta_{j}-I\right|<3\sqrt{\frac{D\eta}{N}}\right\}pprox 0.997.$$

This relation means that if we sample N values $\xi_1, \xi_2, ..., \xi_N$, then for sufficiently large N

$$I pprox rac{1}{N} \sum_{j=1}^{N} rac{g(\xi_j)}{p_{\xi}(\xi_j)}.$$

It also shows that, with very high probability, the error of our approximation will not exceed the value

$$3\sqrt{\frac{\mathbf{D}\eta}{N}}.$$

This relation means that if we sample N values $\xi_1, \xi_2, ..., \xi_N$, then for sufficiently large N

$$I pprox rac{1}{N} \sum_{j=1}^{N} rac{g(\xi_j)}{p_{\xi}(\xi_j)}.$$

It also shows that, with very high probability, the error of our approximation will not exceed the value

$$3\sqrt{\frac{m{D}\eta}{N}}.$$

Independent of which random variable ξ , defined in the interval (a,b), we use, we will obtain

$$M\eta = M \left[\frac{g(\xi)}{p_{\xi}(\xi)} \right] = I.$$

This relation means that if we sample N values $\xi_1, \xi_2, ..., \xi_N$, then for sufficiently large N

$$I pprox rac{1}{N} \sum_{j=1}^{N} rac{g(\xi_j)}{p_{\xi}(\xi_j)}.$$

It also shows that, with very high probability, the error of our approximation will not exceed the value

$$3\sqrt{\frac{\mathbf{D}\eta}{N}}$$
.

Independent of which random variable ξ , defined in the interval (a,b), we use, we will obtain

$$oldsymbol{M} \eta = oldsymbol{M} \left[rac{g(\xi)}{p_{\mathcal{E}}(\xi)}
ight] = I.$$

However, the variance $D\eta$, and hence the estimated error of our approximation, depends on what specific variable ξ is used. Indeed

$$\mathbf{D}\eta = \mathbf{M}\eta^2 - I^2 = \int_a^b \left[\frac{g(x)}{p_{\xi}(x)}\right]^2 p_{\xi}(x) dx - I^2 = \int_a^b \frac{g^2(x)}{p_{\xi}(x)} dx - I^2.$$

We will prove that the variance takes on the minimum if

$$p_{\xi}(x) \sim |g(x)|.$$

However, the variance $D\eta$, and hence the estimated error of our approximation, depends on what specific variable ξ is used. Indeed

$$\mathbf{D}\eta = \mathbf{M}\eta^2 - I^2 = \int_a^b \left[\frac{g(x)}{p_{\xi}(x)}\right]^2 p_{\xi}(x) dx - I^2 = \int_a^b \frac{g^2(x)}{p_{\xi}(x)} dx - I^2.$$

We will prove that the variance takes on the minimum if

$$p_{\xi}(x) \sim |g(x)|.$$

Of course, too complex $p_{\xi}(x)$ should not be chosen, as the procedure of drawing ξ values may become excessively time consuming. But the suggestion given above is a useful guide-line how to select $p_{\xi}(x)$.

However, the variance $D\eta$, and hence the estimated error of our approximation, depends on what specific variable ξ is used. Indeed

$$\mathbf{D}\eta = \mathbf{M}\eta^2 - I^2 = \int_a^b \left[\frac{g(x)}{p_{\xi}(x)} \right]^2 p_{\xi}(x) dx - I^2 = \int_a^b \frac{g^2(x)}{p_{\xi}(x)} dx - I^2.$$

We will prove that the variance takes on the minimum if

$$p_{\xi}(x) \sim |g(x)|$$
.

Of course, too complex $p_{\xi}(x)$ should not be chosen, as the procedure of drawing ξ values may become excessively time consuming. But the suggestion given above is a useful guide-line how to select $p_{\xi}(x)$.

To find the minimum of the variance

$$\mathbf{D}\eta = \int_{a}^{b} \frac{g^{2}(x)}{p_{\xi}(x)} dx - I^{2}$$

among all possible choices of $p_{\xi}(x)$ we will use the Schwartz inequality which for real functions u(x) and v(x) integrable with their squared module in the interval (a,b) has the form

$$\left[\int_a^b |u(x)v(x)|dx\right]^2 \leq \int_a^b u^2(x)dx \int_a^b v^2(x)dx.$$

Let us set $u(x) = \frac{g(x)}{\sqrt{p_{\xi}(x)}}$ and $v(x) = \sqrt{p_{\xi}(x)}$, then we will obtain

$$\left[\int_a^b |g(x)|dx\right]^2 \leq \int_a^b \frac{g^2(x)}{p_{\xi}(x)}dx \int_a^b p_{\xi}(x)dx = \int_a^b \frac{g^2(x)}{p_{\xi}(x)}dx.$$

To find the minimum of the variance

$$\mathbf{D}\eta = \int_{a}^{b} \frac{g^{2}(x)}{p_{\xi}(x)} dx - I^{2}$$

among all possible choices of $p_{\xi}(x)$ we will use the Schwartz inequality which for real functions u(x) and v(x) integrable with their squared module in the interval (a,b) has the form

$$\left[\int_a^b |u(x)v(x)|dx\right]^2 \leq \int_a^b u^2(x)dx \int_a^b v^2(x)dx.$$

Let us set $u(x) = \frac{g(x)}{\sqrt{p_{\xi}(x)}}$ and $v(x) = \sqrt{p_{\xi}(x)}$, then we will obtain

$$\left[\int_a^b |g(x)|dx\right]^2 \leq \int_a^b \frac{g^2(x)}{p_{\xi}(x)}dx \int_a^b p_{\xi}(x)dx = \int_a^b \frac{g^2(x)}{p_{\xi}(x)}dx.$$

Hence, for the variance, we will get

$$\mathbf{D}\eta = \int_a^b \frac{g^2(x)}{p_{\xi}(x)} dx - I^2 \ge \left[\int_a^b |g(x)| dx \right]^2 - I^2.$$

Now, let us choose

$$p_{\xi}(x) = \frac{|g(x)|}{\int_a^b |g(x)| dx}$$

and calculate the variance $\boldsymbol{D}\eta$

$$\mathbf{D}\eta = \int_{a}^{b} \frac{g^{2}(x)}{p_{\xi}(x)} dx - I^{2} = \int_{a}^{b} \frac{g^{2}(x)}{\frac{|g(x)|}{\int_{a}^{b} |g(x)| dx}} dx - I^{2} = \left[\int_{a}^{b} |g(x)| dx\right]^{2} - I^{2},$$

so we see that it reaches its minimum value for $p_{\xi}(x) \sim |g(x)|$. However, the above choice of $p_{\xi}(x)$ require that we know the integral $\int_a^b |g(x)| dx$.

Hence, for the variance, we will get

$$\mathbf{D}\eta = \int_a^b \frac{g^2(x)}{p_{\xi}(x)} dx - I^2 \ge \left[\int_a^b |g(x)| dx \right]^2 - I^2.$$

Now, let us choose

$$p_{\xi}(x) = \frac{|g(x)|}{\int_a^b |g(x)| dx}$$

and calculate the variance $\boldsymbol{D}\eta$

$$\mathbf{D}\eta = \int_{a}^{b} \frac{g^{2}(x)}{p_{\xi}(x)} dx - I^{2} = \int_{a}^{b} \frac{g^{2}(x)}{\frac{|g(x)|}{\int_{a}^{b} |g(x)| dx}} dx - I^{2} = \left[\int_{a}^{b} |g(x)| dx\right]^{2} - I^{2},$$

so we see that it reaches its minimum value for $p_{\xi}(x) \sim |g(x)|$. However, the above choice of $p_{\xi}(x)$ require that we know the integral $\int_a^b |g(x)| dx$.