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Neutron transmission through a plate

The flux of neutrons with energy E0 is incident on a homogeneous
infinite plate 0 ≤ x ≤ h. The angle of incidence is 90◦. Upon
collision with atoms of the plate material neutrons may be either
elastically scattered or captured. Possible fates of a neutron are
depicted below: (a) it either passes, (b) is captured, or (c) is
reflected by the plate.
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Neutron transmission through a plate

We want to calculate the probability of neutron transmission
through the plate p+, the probability of neutron reflection by the
plate p− and the probability of neutron capture inside the plate p0.
Let assume for simplicity that energy of a neutron is not changed
in scattering and that any direction of recoil of a neutron from an
atom is equally probable, which is actually the case in neutron
collisions with heavy atoms.

Interaction of neutrons with matter is characterized by two
constants: the capture cross section σc and the scattering cross
section σs . The sum of them called the total cross section σ

σ = σc + σs .

The physical meaning of these cross sections is as follows: the
probability of neutron capture upon collision with an atom is equal
to σc/σ and the probability of scattering is equal to σs/σ.
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Neutron transmission through a plate

The free path length of a neutron λ, i.e. the length of the path
from one collision to another is a random variable with the
probability density

p(x) = σe−σx .

Let us check the normalization condition, assuming that the
macroscopic width of the plate h can be set ∞.
∞∫
0

p(x)dx = σ

∞∫
0

e−σxdx == σ

[
− 1

σ
e−σx

]∞
o

= σ
1

σ
e0 = 1,

Similarly, let us find the expectation value of λ

Mλ = σ

∞∫
0

xe−σxdx =

{
u = x ⇒ du = dx
dv = e−σxdx ⇒ v = − 1

σ e
−σx

}

= σ

−x

σ
e−σx

∣∣∣∞
0

+
1

σ

∞∫
0

e−σxdx

 = − 1

σ
e−σx

∣∣∣∣∞
o

=
1

σ
.
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Neutron transmission through a plate

Let us solve the formula for drawing λ values

σ

λ∫
0

e−σxdx = γ,

where γ is the random variable uniformly distributed in the interval
(0, 1).

σ

[
− 1

σ
e−σx

]λ
0

= γ ⇒ − e−σλ + 1 = γ ⇒ e−σλ = 1− γ.

Hence

λ = − 1

σ
ln(1− γ).

However, 1− γ is also random variable uniformly distributed in the
interval (0, 1), the same as γ, therefore we can write

λ = − 1

σ
lnγ.
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Calculation of a definite integral

We select a random direction of the neutron after scattering. As
the problem is symmetric with respect to rotations about the
Ox-axis, the neutron direction after k-th scattering inside the plate
at the point with abscissa xk is completely determined by the angle
ϕk , as in the figure below.

We are now ready to simulate the trajectory of a neutron.
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Neutron transmission through a plate

Actually, we can use the random variable µk = cosϕk instead,
which we assume to be uniformly distributed in the interval
(−1, 1). Thus, we generate

µk = cosϕk = [1− (−1)]γ − 1 = 2γ − 1.

We draw the free path length

λk = − 1

σ
lnγ

and calculate the abscissa xk+1 of the next collision point

xk+1 = xk + λkµk .

Then we check the condition of neutron transmission through the
plate

xk+1 > h.

If it is so, the computation of the trajectory is terminated and 1 is
added to the counter of transmitted neutrons.

Karol Ko lodziej Applications of the MC method 7/16



Neutron transmission through a plate

Actually, we can use the random variable µk = cosϕk instead,
which we assume to be uniformly distributed in the interval
(−1, 1). Thus, we generate

µk = cosϕk = [1− (−1)]γ − 1 = 2γ − 1.

We draw the free path length

λk = − 1

σ
lnγ

and calculate the abscissa xk+1 of the next collision point

xk+1 = xk + λkµk .

Then we check the condition of neutron transmission through the
plate

xk+1 > h.

If it is so, the computation of the trajectory is terminated and 1 is
added to the counter of transmitted neutrons.

Karol Ko lodziej Applications of the MC method 7/16



Neutron transmission through a plate

Actually, we can use the random variable µk = cosϕk instead,
which we assume to be uniformly distributed in the interval
(−1, 1). Thus, we generate

µk = cosϕk = [1− (−1)]γ − 1 = 2γ − 1.

We draw the free path length

λk = − 1

σ
lnγ

and calculate the abscissa xk+1 of the next collision point

xk+1 = xk + λkµk .

Then we check the condition of neutron transmission through the
plate

xk+1 > h.

If it is so, the computation of the trajectory is terminated and 1 is
added to the counter of transmitted neutrons.

Karol Ko lodziej Applications of the MC method 7/16



Neutron transmission through a plate

Actually, we can use the random variable µk = cosϕk instead,
which we assume to be uniformly distributed in the interval
(−1, 1). Thus, we generate

µk = cosϕk = [1− (−1)]γ − 1 = 2γ − 1.

We draw the free path length

λk = − 1

σ
lnγ

and calculate the abscissa xk+1 of the next collision point

xk+1 = xk + λkµk .

Then we check the condition of neutron transmission through the
plate

xk+1 > h.

If it is so, the computation of the trajectory is terminated and 1 is
added to the counter of transmitted neutrons.

Karol Ko lodziej Applications of the MC method 7/16



Neutron transmission through a plate

Otherwise we check the condition of reflection

xk+1 < 0.

If it is so, the computation of the trajectory is terminated and 1 is
added to the counter of reflected neutrons.
If neither of the two conditions are satisfied, i.e.

0 ≤ xk+1 ≤ h,

which means that the neutron has undergone the (k + 1)-th
collision inside the plate, we choose another value of γ and check
the capture condition

γ <
σc
σ
.

If this inequality is satisfied, the trajectory is terminated and we
add 1 to the counter of captured neutrons. Otherwise, we repeat
the whole procedure for the next scattering point.
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Neutron transmission through a plate

Obviously, the initial values for each trajectory are

x0 = 0, cosϕ0 = 1.

After N trajectories are sampled we obtain the following results

N+ neutrons were transmitted through the plate,

N− neutrons were reflected by the plate,

N0 neutrons were captured in it.

It is obvious that the corresponding probabilities are approximately
equal to

p+ =
N+

N
, p− =

N−

N
, p0 =

N0

N
,

where N = N+ + N− + N0.
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Neutron transmission through a plate

Here is the block scheme of the computer program for this problem
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Calculation of a definite integral

Let us consider a function g(x) defined in the interval a < x < b.
We want to approximate the integral

I =

b∫
a

g(x)dx .

Although this problem is not at all probabilistic, we will apply the
Monte Carlo method to solve it.
Let us choose an arbitrary distribution density pξ(x) specified in
the interval (a, b), i.e. an arbitrary function pξ(x) satisfying the
conditions

pξ(x) > 0 and

b∫
a

pξ(x)dx = 1.
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Calculation of a definite integral

Along with the random variable ξ defined on the interval (a, b)
with the density pξ(x), we will need another random variable

η =
g(ξ)

pξ(ξ)
.

Let us calculate the expectation value of η

Mη =

b∫
a

[
g(x)

pξ(x)

]
pξ(x)dx = I .

Let us consider now N identical independent random variables
η1, η2, ..., ηN and apply the central limit theorem to their sum.
Then we will obtain the relation

P


∣∣∣∣∣∣ 1

N

N∑
j=1

ηj − I

∣∣∣∣∣∣ < 3

√
Dη
N

 ≈ 0.997.
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Calculation of a definite integral

This relation means that if we sample N values ξ1, ξ2, ..., ξN , then
for sufficiently large N

I ≈ 1

N

N∑
j=1

g(ξj)

pξ(ξj)
.

It also shows that, with very high probability, the error of our
approximation will not exceed the value

3

√
Dη
N
.

Independent of which random variable ξ, defined in the interval
(a, b), we use, we will obtain

Mη = M
[
g(ξ)

pξ(ξ)

]
= I .
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Calculation of a definite integral

However, the variance Dη, and hence the estimated error of our
approximation, depends on what specific variable ξ is used. Indeed

Dη =Mη2 − I 2 =

b∫
a

[
g(x)

pξ(x)

]2
pξ(x)dx − I 2 =

b∫
a

g2(x)

pξ(x)
dx − I 2.

We will prove that the variance takes on the minimum if

pξ(x) ∼ |g(x)|.

Of course, too complex pξ(x) should not be chosen, as the
procedure of drawing ξ values may become excessively time
consuming. But the suggestion given above is a useful guide-line
how to select pξ(x).
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The choice of the best ξ

To find the minimum of the variance

Dη =

b∫
a

g2(x)

pξ(x)
dx − I 2

among all possible choices of pξ(x) we will use the Schwartz
inequality which for real functions u(x) and v(x) integrable with
their squared module in the interval (a, b) has the form b∫

a

|u(x)v(x)|dx

2

≤
b∫

a

u2(x)dx

b∫
a

v2(x)dx .

Let us set u(x) = g(x)√
pξ(x)

and v(x) =
√
pξ(x), then we will obtain b∫

a

|g(x)|dx

2

≤
b∫

a

g2(x)

pξ(x)
dx

b∫
a

pξ(x)dx =

b∫
a

g2(x)

pξ(x)
dx .
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The choice of the best ξ

Hence, for the variance, we will get

Dη =

b∫
a

g2(x)

pξ(x)
dx − I 2 ≥

 b∫
a

|g(x)|dx

2

− I 2.

Now, let us choose

pξ(x) =
|g(x)|∫ b

a |g(x)|dx
and calculate the variance Dη

Dη =

b∫
a

g2(x)

pξ(x)
dx − I 2 =

b∫
a

g2(x)
|g(x)|∫ b

a |g(x)|dx

dx − I 2 =

 b∫
a

|g(x)|dx

2

− I 2,

so we see that it reaches its minimum value for pξ(x) ∼ |g(x)|.
However, the above choice of pξ(x) require that we know the

integral
∫ b
a |g(x)|dx .
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