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Normal random variables

A random variable ζ defined on the entire axis (−∞,+∞) and
characterized by the density

p(x) =
1√
2πσ

e−
(x−a)2

2σ2 ,

where a and σ > 0 are numerical parameters, is said to be normal
or Gaussian random variable.
The parameter a does not affect the shape of the p(x) curve. It
just shifts the curve as a whole along the x-axis. On the contrary,
variation of σ changes the shape of the curve. It is easily seen that

maxp(x) = p(a) =
1√
2πσ

.

Hence, a decrease of σ increases maxp(x), but as∫ +∞
−∞ p(x)dx = 1, the entire area below the p(x) curve is equal to

1.
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Normal random variables

Therefore the p(x) curve will stretch upward in the vicinity of
x = a, but it will decrease at sufficiently large of x . The normal
densities for a = 0 and σ = 1, as well as for a = 0 and σ = 0.5 are
plotted below.

Exercise. Prove that

Mζ = a, Dζ = σ2.
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Normal random variables

Normal random variables are frequently encountered in
investigation of many diverse problems. Why it is so, will be
discussed later.
For example, the experimental error δ is usually a normal random
variable. If there is no systematic error (bias) then

a = Mδ = 0.

The value

σ =
√

Dζ,

called standard deviation, characterizes the error of the
measurement.

Karol Ko lodziej General scheme of the MC method 4/26



The “3 sigma” rule

It can be shown that regardless of the values of a and σ

a+3σ∫
a−3σ

p(x)dx =
1√
2πσ

a+3σ∫
a−3σ

e−
(x−a)2

2σ2 dx = 0.997.

Hence the corresponding probability of finding the normal random
variable ζ in the interval (a− 3σ, a + 3σ) is equal to

P{a− 3σ < ζ < a + 3σ} = 0.997.

The probability 0.997 is so close to 1 that sometimes this formula
is interpreted in the following way: it is almost impossible to obtain
in a single trial a value of ζ deviating from Mζ by more than 3σ.
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Central limit theorem

This spectacular theorem was first formulated and proved by the
French mathematician Pierre-Simon Laplace in 1810. A number of
outstanding mathematicians, P.L. Chebyshev, A.A. Markov and
A.M. Lyapunov among them, investigated the problem of
generalizing this theorem. Its proof is rather complicated, therefore
we will not present it here.
Let us consider N identical independent random variables
ξ1, ξ2, ..., ξN such that their probability distributions coincide.
Consequently, both their expected values and variances coincide as
well.
Let us denote

Mξ1 = Mξ2 = ... = MξN = m,

Dξ1 = Dξ2 = ... = DξN = b2

and denote the sum of all these values as ρN

ρN = ξ1 + ξ2 + ...+ ξN .
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Central limit theorem

Now we know that the expected value and variance of the sum of
independent random variables are additive, hence we get

MρN = M(ξ1 + ξ2 + ...+ ξN) = Mξ1 + Mξ2 + ...+ MξN = Nm,

DρN = D(ξ1 + ξ2 + ...+ ξN) = Dξ1 + Dξ2 + ...+ DξN = Nb2.

Let us consider now a normal random variable ζN with a = Nm
and σ2 = Nb2. The central limit theorem states that for any
interval (a′, b′) for large N

P{a′ < ρN < b′} ≈
b′∫

a′

pζN (x)dx .

The physical meaning of this theorem is obvious: the sum ρN of a
large number of identical random variables is approximately
normal, i.e. pρN (x) ≈ pζN (x).
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Central limit theorem

Actually this theorem remains valid for much more general
conditions: all the addends ξ1, ξ2, ..., ξN need not be independent,
it is only essential that none of them plays too great a role in the
sum.
It is this theorem that explains why normal random variables are
met so often in nature. Indeed, whenever we come across an
aggregate effect of a large number of negligible random factors we
find that the resulting random variable is normal.

For example, deviation of an artillery shell off the target is almost
always a normal random variable because it depends on
meteorological conditions in various sections of the trajectory as
well as on many other factors.
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The general scheme of the MC method

Let us assume that we want to calculate some unknown value m.
We shall try to find a random variable ξ such that Mξ = m. Let
us assume also that Dξ = b2.
Let us consider N random independent variables ξ1, ξ2, ..., ξN with
distributions identical to that of ξ. If N sufficiently large than the
distribution of the sum ρN = ξ1 + ξ2 + ...+ ξN will be
approximately normal with the parameters a = Nm, σ2 = Nb2 and
following the 3 sigma rule

P{a− 3σ < ρN < a + 3σ} ≈ 0.997,

we will have

P{Nm − 3b
√
N < ρN < Nm + 3b

√
N} ≈ 0.997.

If we divide the inequalities in braces by N we will get an
equivalent inequality and the probability will not change. Hence

P
{
m − 3b√

N
<
ρN
N

< m +
3b√
N

}
≈ 0.997.
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The general scheme of the MC method

Now, let us rewrite this expression in a somewhat different form:

P


∣∣∣∣∣∣ 1

N

N∑
j=1

ξj −m

∣∣∣∣∣∣ < 3b√
N

 ≈ 0.997.

This formula is very important to the Monte Carlo method. It
gives us both the method of calculating m and the estimate of the
error.
Let us indeed sample N values of the random variable ξ. Actually,
determining a single value of the variables ξ1, ξ2, ..., ξN is
equivalent to determining N values of a single variable ξ, because
all these random variables are identical, i.e. have identical
distributions. Our formula shows that the arithmetic mean of these
values will be approximately equal to m. The error of the
approximation will most probably not exceed the value 3b/

√
N and

it will approach zero if N increases.
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Generation of random numbers

As we already mentioned, the roulette is a device that could in
principle be used to generate random numbers. See the figure
below.

However, this way of generating random numbers would be much
too slow, as for practical calculations we need millions of them.
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Pseudo-random numbers

Various algorithms implemented in computers allow to generate
pseudo-random numbers of quite good quality. The quality can be
checked by means of dedicated tests.
If those tests are satisfied, then the question about the difference
between the pseudo-random numbers and the true random
numbers, which is an ideal mathematical concept, is rather of a
philosophical nature and we will not bother about it here.

Exercise. Plot large a number of points with coordinates randomly
generated with different random number generators, i.e. the
intrinsic generator of the Fortran or C compiler and RANLUX, on
the plane and see if no visible patterns occur.
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Transformations of random numbers

Solution of various problems requires simulation of on various
random variables. We could design a dedicated roulette for each
random variable. For example, the random variable with the
distribution (

x1 x2 x3 x4
0.5 0.25 0.125 0.125

)
could be generated with the roulette depicted below.

However, this proved to be absolutely unnecessary, as the values of
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Transformations of random numbers

any random variable can be obtained by transforming a continuous
random variable γ uniformly distributed in the interval (0, 1).
How to draw a discrete random variable with a given distribution?
Suppose that we want to calculate the random variable

ξ =

(
x1 x2 ... xn
p1 p2 ... pn

)
.

Let us divide the interval (0, 1) into n intervals with lengths equal
to p1, p2, ..., pn by choosing points with the coordinates
p1, p1 + p2, p1 + p2 + p3, ....

Now, let us select γ. Since it is uniformly distributed within (0, 1)
the probability of γ lying within one of the intervals is given by

P{0 < γ < p1} = p1,

P{p1 < γ < p1 + p2} = p2,

.......................................

P{p1 + p2 + ...+ pn−1 < γ < 1} = pn.
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Transformations of random numbers

According to our procedure we may assign ξ = xi if

p1 + p2 + ...+ pi−1 < γ < p1 + p2 + ...+ pi

and the probability of this event is equal to pi .
Exercise. Write a computer program which realizes this
transformation.
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Drawing a continuous random variable

Now, let us assume that we want to generate the values of the
random variable ξ distributed in the interval (a, b) with the density
p(x).
We will prove that ξ can be found from the equation

ξ∫
a

p(x)dx = γ,

where γ is the random variable uniformly distributed in (0, 1).
Let us define the function

y(x) =

x∫
a

p(x)dx .

It is obvious that y(a) = 0 and y(b) = 1.
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Drawing a continuous random variable

Indeed

b∫
a

p(x)dx = 1

due to the normalization condition of the probability density p(x).
The derivative

y ′(x) = p(x) > 0,

which means that the function monotonically increases from 0 to
1, as in the following figure.
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Drawing a continuous random variable

Any straight line y = γ, where 0 < γ < 1, intersects the curve
y(x) at one and only one point whose abscissa is taken for the
value of ξ. Thus, the equation

ξ∫
a

p(x)dx = γ

has always a unique solution.
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Drawing a continuous random variable

Now we select an arbitrary interval (a′, b′) within (a, b). The
ordinates of the curve y = y(x) satisfying the the inequalities

y(a′) < y < y(b′)

correspond to the points of the interval

a′ < x < b′.
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Drawing a continuous random variable

Consequently, if ξ belongs to the interval (a′, b′), then γ belongs
to the interval (y(a′), y(b′)), and vice versa. Hence

P{a′ < ξ < b′} = P{y(a′) < γ < y(b′)}.

Since γ is uniformly distributed in (0, 1), then

P{y(a′) < γ < y(b′)} = y(b′)− y(a′) =

b′∫
a′

p(x)dx .

Thus

P{a′ < ξ < b′} =

b′∫
a′

p(x)dx ,

and this precisely means that the random variable ξ which is the
root of the equation

∫ ξ
a p(x)dx = γ has the probability density

p(x).
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Drawing a continuous random variable

Example. Find the random variable η uniformly distributed in the
interval (a, b).
Solution. Let γ be the random variable uniformly distributed in
the interval (0, 1) and N be the normalization constant of the
probability density of η and solve the equation

N

η∫
a

dx = γ, where N

b∫
a

dx = 1 ⇒ N =
1

b − a
.

The integration gives

N x |ηa =
η − a

b − a
= γ ⇒ η = (b − a)γ + a.

We see, that if γ = 0 ⇒ η = a and if γ = 1 ⇒ η = b, as it
should be.
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Drawing a continuous random variable

Exercise. Find the random variable ξ with the following densities
p(x)

1 x ∈ (x0, xmax), with x0, xmax > 0, and

p(x) =
N

x
,

2 x ∈ (0, xmax), with xmax < 1, and

p(x) =
N

1− x
,

3 x ∈ (−c0, c0), with 0 < c0 < 1, and

p(x) =
N

1− β2x2
, where β = 1− ε, ε > 0,

4 x ∈ (−c0, c0), with 0 < c0 < 1, and

p(x) =
N

a + x
, where a > 0, a > c0
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Drawing a continuous random variable

It may happen that the equation
∫ ξ
a p(x)dx = γ cannot be solved

analytically, as it is the case, e.g., for the normal distribution. Then
the random variable can be drawn with von Neumann, method.
Let us assume that the random variable ξ is defined on a finite
interval (a, b) and its density is limited p(x) ≤ M0, as in the figure
below.
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von Neumann’s method

The variable ξ may be drawn as follows:

1 Select two values γ′ and γ′′ of the random variable γ and
generate a random point Γ(η′, η′′) with coordinates

η′ = (b − a)γ′ + a, η′′ = M0γ
′′.

2 If the point Γ lies below the curve y = p(x) then assume
ξ = η′.

3 If the point Γ lies above the curve y = p(x) then reject the
pair (γ′, γ′′).
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von Neumann’s method

Proof. The random point Γ is uniformly distributed in the
rectangle abcd whose area is M0(b − a).
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von Neumann’s method

The probability for the point Γ to fall below the curve y = p(x)
and thus not to be rejected is equal to the ratio of the areas∫ b

a p(x)dx

M0(b − a)
=

1

M0(b − a)
.

The probability for the point Γ to fall below the curve y = p(x) in
the interval (a′, b′) is also equal to the ratio of areas∫ b′

a′ p(x)dx

M0(b − a)
.

Hence, the fraction of ξ values comprised within the interval
(a′, b′) among all selected values of ξ is equal to the ratio∫ b′

a′ p(x)dx

M0(b − a)
:

1

M0(b − a)
=

b′∫
a′

p(x)dx ,
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