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The origin of the Monte Carlo method

The Monte Carlo method is a numerical method of solving
mathematical, physical, etc., problems by means of random
sampling.
It is conventionally assumed to be born in 1949 when the paper
The Monte Carlo method was published:
N. Metropolis and S. Ulam, J. Amer. statistical assoc., 44 No.
247, 335-341.

John von Neumann and Stanis law Ulam - a member of the Lwów
Mathematical School, who also became the US citizen in 1943 -
are thought to have developed the method.
Actually, theoretical basics of the methods were known much
earlier, as some statistical problems were solved by means of
random sampling, however, it could not be used on a significant
scale because manual simulation of random variables is a very time
consuming procedure.
Thus, the Monte Carlo method became feasible only in the era of
computers.
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The origin of the Monte Carlo method

The term Monte Carlo is due to the name of town Monte Carlo in
the Principality of Monaco which is famous for its casino. The
point is that the roulette is one of the simplest mechanical devices
for generation of random numbers.
However, the Monte Carlo method does not obviously help to
increase the chance of win in the game.
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Example

To clarify the idea behind the Monte Carlo method, let us consider
a simply example.
Example Assume that we want to calculate the area of a flat
figure S depicted in the figure below.

Assume that S is enclosed within a unit square. Now, let us select
N random points, N ′ of which fall within S .
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Example

It is obvious that the area of S should be equal approximately to
the ratio N ′/N.
In our example N = 40 of which N ′ = 12 is inside S , thus

N ′

N
=

12

40
= 0.30,

while the true area of S is 0.35. Obviously, our approximation
would become better, if we used more random points.

In practise the Monte Carlo (MC) method is not used to calculate
areas of flat figures, as there are much better methods, though a
bit more complicated, which are much better in this respect.
However, the MC method becomes indispensable, if we want to
calculate volume of a body in a multidimensional space.
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More about the example

How the random points should actually be selected?
Consider our example once more, but this time imagine that we fix
our figure on the wall and let some dart player to hit it with darts
from some distance.

We see, that now N = 40 of which N ′ = 24 is inside S , thus

N ′

N
=

24

40
= 0.60,
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More about the example

which is almost twice the true value of the area that is equal to
0.35.
Obviously, if the dart player was better our result would become
even worse, as almost all hits would be inside S .

We see, that our approximation is better if the random points are
uniformly scattered over the whole square.
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Random variables

The term random variable, in its commonplace sense is used to
emphasize that we do not know what specific value this variable
will assume.
Mathematicians, however, use the term random variable in quite a
definite sens. Although we indeed do not know what value will this
variable take on in a given case, we do know what values it can
assume and what are the respective probabilities.

The result of a single trial representing the random variable cannot
be predicted, but we can predict very reliably the result of a large
number of trials.
The bigger the number of trials ⇒ the more accurate
prediction.
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Discrete random variables

A random variable ξ which takes on values from a discrete set
{x1, x2, ..., xn} is specified by the table

ξ =

(
x1 x2 ... xn
p1 p2 ... pn

)
,

where p1, p2, ..., pn are the corresponding probabilities.
Denote the probability that the random variable ξ will be equal to
xi by

P{ξ = xi} = pi .

While the values x1, x2, ..., xn can be arbitrary, the probabilities
p1, p2, ..., pn must satisfy simultaneously two conditions:

1 all pi ’s are non negative: pi > 0;

2 the sum of all pi ’s is equal to 1: p1 + p2 + ...+ pn = 1.
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Discrete random variables

Condition 2 means that in each trial ξ must assume one of the
values x1, x2, ..., xn.
The quantity

Mξ =
n∑

i=1

xipi

is called the expected value or mean value of the random variable
ξ.

We see that values xi with greater probabilities contribute more
to the mean than those associated with smaller probabilities.
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Basic properties of the expected value

If c is an arbitrary non-random number, then

M(ξ + c) = Mξ + c ,

M(cξ) = cMξ.

If ξ and η are two arbitrary random variables, then

M(ξ + η) = Mξ + Mη.

The quantity

Dξ = M[(ξ − Mξ)2]

is called the variance of the random variable ξ.

Thus variance Dξ
is the expected value of the square of the deviation of the random
variable ξ from the mean value Mξ. It is obvious that in all cases
Dξ > 0.
Expected value and variance are the two most important numerical
characteristics of the random variable ξ. What is their practical
importance?
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Practical importance of Mξ and Dξ

If in the course of many observations of the random variable ξ we
obtain a set of values ξ1, ξ2, ..., ξN , each of them being equal to
one of the numbers x1, x2, ..., xn, then the arithmetic mean of these
numbers will be close to Mξ, i.e.

1

N
(ξ1 + ξ2 + ...+ ξN) ≈ Mξ.

The variance Dξ > 0 characterizes the spreading of ξ1, ξ2, ..., ξN
around the mean value Mξ.

Using the definition and the above properties of the expected value
variance Dξ can be written in the following way

Dξ = M[(ξ − Mξ)2] = M[ξ2 − 2Mξ · ξ + (Mξ)2]

= M(ξ2) − 2Mξ · Mξ + (Mξ)2],

whence

Dξ = M(ξ2) − (Mξ)2.
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Basic properties of variance

If c is an arbitrary non-random number, then

D(ξ + c) = Dξ + c ,

D(cξ) = c2Dξ.

The concept of independence of random variables plays an
important role in the probability theory. Although being quite
complicated, it may be quite clear in the simplest cases.

Let us assume a simultaneous observation of random variables ξ
and η. If the distribution of ξ does not change after we have found
the value of η, then it natural to consider ξ as being independent
of η.
The following relations are valid for independent random variables
ξ and η

M(ξη) = Mξ · Mη,

D(ξ + η) = Dξ + Dη.

Karol Ko lodziej The Monte Carlo method - Introduction 13/22



Basic properties of variance

If c is an arbitrary non-random number, then

D(ξ + c) = Dξ + c ,

D(cξ) = c2Dξ.

The concept of independence of random variables plays an
important role in the probability theory. Although being quite
complicated, it may be quite clear in the simplest cases.
Let us assume a simultaneous observation of random variables ξ
and η. If the distribution of ξ does not change after we have found
the value of η, then it natural to consider ξ as being independent
of η.

The following relations are valid for independent random variables
ξ and η

M(ξη) = Mξ · Mη,

D(ξ + η) = Dξ + Dη.

Karol Ko lodziej The Monte Carlo method - Introduction 13/22



Basic properties of variance

If c is an arbitrary non-random number, then

D(ξ + c) = Dξ + c ,

D(cξ) = c2Dξ.

The concept of independence of random variables plays an
important role in the probability theory. Although being quite
complicated, it may be quite clear in the simplest cases.
Let us assume a simultaneous observation of random variables ξ
and η. If the distribution of ξ does not change after we have found
the value of η, then it natural to consider ξ as being independent
of η.
The following relations are valid for independent random variables
ξ and η

M(ξη) = Mξ · Mη,

D(ξ + η) = Dξ + Dη.

Karol Ko lodziej The Monte Carlo method - Introduction 13/22



Basic properties of variance

If c is an arbitrary non-random number, then

D(ξ + c) = Dξ + c ,

D(cξ) = c2Dξ.

The concept of independence of random variables plays an
important role in the probability theory. Although being quite
complicated, it may be quite clear in the simplest cases.
Let us assume a simultaneous observation of random variables ξ
and η. If the distribution of ξ does not change after we have found
the value of η, then it natural to consider ξ as being independent
of η.
The following relations are valid for independent random variables
ξ and η

M(ξη) = Mξ · Mη,

D(ξ + η) = Dξ + Dη.

Karol Ko lodziej The Monte Carlo method - Introduction 13/22



Examples

Example. Let us consider a random variable κ which is the
number of points obtained in a single throw of a die. It can be
represented by the following table

κ =

(
1 2 3 4 5 6
1
6

1
6

1
6

1
6

1
6

1
6

)
.

Let us find the expected value and variance of κ.

Mκ =
6∑

i=1

xipi = 1 · 1

6
+ 2 · 1

6
+ ...+ 6 · 1

6
= 3.5,

Dκ = M(κ2) − (Mκ)2 = 12 · 1

6
+ 22 · 1

6
+ ...+ 62 · 1

6
− 3.52 = 2.917.
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Examples

Example. Let us consider a random variable θ which is a single
toss of a coin, assuming that a toss of heads brings 3 points an that
of tails brings 4 points. It can be represented by the following table

θ =

(
3 4
1
2

1
2

)
.

The expected value and variance of θ are

Mθ =
2∑

i=1

xipi = 3 · 1

2
+ 4 · 1

2
= 3.5,

Dθ = M(θ2) − (Mθ)2 = 32 · 1

2
+ 42 · 1

2
− 3.52 = 0.25.

We see that Mθ = Mκ, but Dθ < Dκ. The inequality can be
easily understood, as the maximum deviation of θ from the mean
3.5 is ±0.5, while the maximum deviation of κ from the mean is
±2.5.
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Continuous random variables

Let us assume that a certain amount of radium is placed on a
plane at the origin of the coordinates. An α-particle is emitted in
each decay of a radium atom. The direction of motion of this
particle will be characterized by an angle ψ, see the figure below.

Since any direction of emission is possible, the random variable ψ
can assume any value fro 0 to 2π.
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Continuous random variables

We shall call a random variable ξ continuous if it takes on any
value out of a certain interval (a, b).
A continuous random variable ξ is defined by specifying the
interval (a, b) of its variation and the function p(x) called the
probability density of the random variable ξ.
The physical meaning of p(x) is the following. Let (a′, b′) be an
arbitrary interval contained within (a, b), i.e. a ≤ a′ and b′ ≤ b.
Then the probability that ξ falls inside (a′, b′) is given by the
integral

P{a′ < ξ < b′} =

b′∫
a′

p(x)dx .
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Continuous random variables

The integral
∫ b′

a′ p(x)dx is equal to the hatched area in the
following figure.

The set of values of ξ can be any interval. The cases when
a = −∞ as well as b = +∞ are also possible.
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Continuous random variables

However, the density p(x) must satisfy two conditions, similar to
those of probabilities pi in the case of a discrete random variable:

1 the density p(x) is positive: p(x) > 0,

2 the integral of the density p(x) over the whole interval (a, b)
is equal to 1:

b∫
a

p(x)dx = 1.

The value

Mξ =

b∫
a

xp(x)dx

is called expected or mean value of the continuous random
variable.
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Continuous random variables

All properties of the expected value and variance of the continuous
random variable are the same as those of the discrete random
variable.
We will mention here only one more expression for the expected
value of a function of ξ. Let us assume that the random variable ξ
is characterized by the probability density p(x) and consider an
arbitrary continuous function f (x). We introduce a random
variable η = f (ξ). It can be shown that

Mf (ξ) =

b∫
a

f (x)p(x)dx .

We must emphasize that in general Mf (ξ) ̸= f (Mξ).
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We must emphasize that in general Mf (ξ) ̸= f (Mξ).
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Continuous random variables

A random variable γ, defined on the interval (0, 1) with the density
p(x) = 1 is said to be uniformly distributed in (0, 1), see the figure
below.
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Continuous random variables

Indeed, for any interval (a′, b′) within (0, 1) the probability that γ
will take on the value within (a′, b′) is equal to

b′∫
a′

p(x)dx = b′ − a′,

i.e. to the length of this interval. If, in particular, we divide the
interval (0, 1) into an arbitrary number of intervals of equal length,
the probability of γ falling within one of these intervals will be the
same. Note that

Mγ =

1∫
0

xp(x)dx =

1∫
0

xdx =
1

2
,

Dγ =

1∫
0

x2p(x)dx − (Mγ)2 =
1

3
− 1

4
=

1

12
.
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