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Relativistic scattering

Relativistic scattering on fixed target

Relativistic cross section and decay width

Karol Kołodziej Relativistic scattering theory 2/42



Interaction picture

The interaction picture of quantum mechanics (QM) is used, if the
Hamiltonian of the physical system can be decomposed into two
parts

H = H0 + V ,

where H0 does not explicitly depend on time and has a simple form.
Let us define

|αI (t)〉 ≡ e
i
~H0S (t−t0) |αS (t)〉 ,

ΩI (t) ≡ e
i
~H0S (t−t0)ΩS e−

i
~H0S (t−t0).

Note that

〈αS (t)|ΩS |βS (t)〉
= 〈αS (t)| e−

i
~H0(t−t0)e

i
~H0(t−t0)︸ ︷︷ ︸

I

ΩS e−
i
~H0(t−t0)e

i
~H0(t−t0)︸ ︷︷ ︸

I

|βS (t)〉 ,
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Interaction picture

and taking into account that

|βI (t)〉 = e
i
~H0S (t−t0) |βS (t)〉 , 〈αI (t)| = 〈αS (t)| e−

i
~H0S (t−t0),

ΩI (t) = e
i
~H0S (t−t0)ΩS e−

i
~H0S (t−t0)

we get

〈αS (t)|ΩS |βS (t)〉
= 〈αS (t)| e−

i
~H0(t−t0)︸ ︷︷ ︸

〈αI (t)|

e
i
~H0(t−t0)ΩS e−

i
~H0(t−t0)︸ ︷︷ ︸

ΩI (t)

e
i
~H0(t−t0) |βS (t)〉︸ ︷︷ ︸

|βI (t)〉

= 〈αI (t)|ΩI (t)|βI 〉 ,

thus the matrix element of an operator remains unchanged.
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Interaction picture

Note that as, due to the fact that H0 need not commute with
H = HS , we have

HI (t) = e
i
~H0S (t−t0)HS e−

i
~H0S (t−t0) 6= HS ,

but

H0I (t) = e
i
~H0S (t−t0)H0S e−

i
~H0S (t−t0) = H0S e

i
~H0S (t−t0)e−

i
~H0S (t−t0)

= H0S .
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Interaction picture

Let us calculate

i~
d
dt
|αI (t)〉 = i~

d
dt

(
e

i
~H0S (t−t0) |αS (t)〉

)

= i~
i

~
H0S e

i
~H0S (t−t0) |αS (t)〉+ e

i
~H0S (t−t0)i~

d
dt
|αS (t)〉

= − H0S e
i
~H0S (t−t0) |αS (t)〉+ e

i
~H0S (t−t0)HS |αS (t)〉

= − H0S |αI (t)〉+ e
i
~H0S (t−t0) (H0S + VS ) |αS (t)〉

= − H0S |αI (t)〉+ H0S |αI (t)〉
+ e

i
~H0S (t−t0)VS e−

i
~H0S (t−t0)︸ ︷︷ ︸

VI (t)

e
i
~H0S (t−t0) |αS (t)〉︸ ︷︷ ︸

|αI (t)〉

.
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Interaction picture
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Interaction picture
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Interaction picture

In this way we got the evolution equation of the QM state in an
interaction picture

i~
d
dt
|αI (t)〉 = VI (t) |αI (t)〉 .

Representation of that kind is useful in particular if VI (t) contains
some small parameter, as e.g. electric charge.

Let us calculate

d
dt

ΩI (t) =
i

~
H0S e

i
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∂Ω

∂t

)
I

+
1
i~

ΩI H0S

=

(
∂Ω

∂t

)
I

+
1
i~

[ΩI ,H0I ] ,

where we have used the equality H0I = H0S .
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Interaction picture

Thus, the evolution equation of the QM state in an interaction
picture has the following form

d
dt

ΩI (t) =

(
∂Ω

∂t

)
I

+
1
i~

[ΩI ,H0I ] ,

where H0I = H0S = H0.
We see that

in the Schrödinger picture of QM what evolves are the QM states,
in the Heisenberg picture evolve dynamical variables,
and in the interaction picture evolve both the QM states and
dynamical variables.
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Evolution operator

If VI (t) contains some small parameter, as e.g. electric charge, then
the evolution equation of the QM state in the interaction picture

i~
d
dt
|αI (t)〉 = VI (t) |αI (t)〉

can be considered as the starting point of the perturbative
expansion.

Define the time evolution operator in the interaction picture
UI (t ′, t).

|αI (t ′)
〉

= UI (t ′, t) |αI (t)〉 , UI (t, t) = 1.

The evolution operator UI (t ′, t) satisfies the same equation as the
state vector |αI (t)〉.
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Perturbation expansion

Indeed, let us calculate

i~
d
dt
|αI (t)〉 = i~

d
dt

UI (t, t0) |αI (t0)〉 =

VI (t) |αI (t)〉

= VI (t)UI (t, t0) |αI (t0)〉 .

If we compare coefficients of the arbitrary chosen initial state
|αI (t0)〉 we will get

i~
d
dt

UI (t, t0) = VI (t)UI (t, t0).

Let’s integrate both sides of this equation

i~
t∫

t0

d
dt ′

UI (t ′, t0)dt ′ =

t∫
t0

VI (t ′)UI (t ′, t0)dt ′.
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Perturbation expansion

i~ (UI (t, t0)− UI (t0, t0)) =

t∫
t0

VI (t ′)UI (t ′, t0)dt ′.

After simple modifications and using the initial condition
UI (t0, t0) = 1 we obtain the following integral equation for the
time evolution operator in the interaction picture

UI (t, t0) = 1− i

~

t∫
t0

VI (t ′)UI (t ′, t0)dt ′.

This equation can be iterated.
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Perturbation expansion

Assume t  t1  t0 and iterate for the first time

UI (t, t0) = 1− i

~

t∫
t0

VI (t1)

1− i

~

t1∫
t0

VI (t ′)UI (t ′, t0)dt ′
 dt1

= 1− i

~

t∫
t0

VI (t1)dt1 +

(
− i

~

)2 t∫
t0

t1∫
t0

VI (t1)VI (t ′)UI (t ′, t0)dt ′dt1

In the second iteration, assuming t  t1  t2  t0, we will get

UI (t, t0) = 1− i

~

t∫
t0

VI (t1)dt1 +

(
− i

~

)2 t∫
t0

t1∫
t0

VI (t1)VI (t2)
(

1

− i

~

t2∫
t0

VI (t ′)UI (t ′, t0)dt ′
)
dt2dt1.
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Perturbation expansion

By repeating this procedure we will obtain the following formula
for the perturbative expansion of the evolution operator

UI (t, t0) = 1

+
∞∑

n=1

(
− i

~

)n
t∫

t0

dt1

t1∫
t0

dt2...

tn−1∫
t0

dtnVI (t1)VI (t2)...VI (tn),

where in the n-th iteration we have assumed the following time
order t  t1  t2  ...  tn  t0.
Let us introduce the time ordered product of operators

T
[
VI (t1)VI (t2)...VI (tn)

]
≡
{

VI (t1)VI (t2)...VI (tn), for t1  t2  ...  tn−1  tn,
0, in other cases.
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Perturbation expansion

Then the perturbative expansion of the evolution operator takes
the form

UI (t, t0) = 1

+
∞∑

n=1

1
n!

(
− i

~

)n
t∫

t0

dt1

t∫
t0

dt2...
t∫

t0

dtnT [VI (t1)VI (t2)...VI (tn)] ,

where all the upper integration limits are equal.
Exercise. Justify the 1n! factor in the above expression.

In the quantum field theory, one usually uses the interaction
Hamiltonian density instead of the potential VI (t) which is defined
as

VI (t) =

∫
d3x HI (x),

where one integrates over the full 3-dimensional hyper surface of
t = const in the 4-dimensional Minkowski’s space time.
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Perturbation expansion

Thus the perturbative expansion of the evolution operator can be
written as

UI (t, t0) = 1

+
∞∑

n=1

1
n!

(
− i

~

)n ∫
d4x1

∫
d4x2...

∫
d4xnT [HI (x1)HI (x2)...HI (xn)] .

If HI (x) contains a small parameter, then it is usually enough to
calculate a few lowest order terms of the expansion series of the
operator UI (t, t0), e.g. in quantum electrodynamics (QED)

HI (x) = −eψ̄(x)γµψ(x)Aµ(x).
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Scattering operator

Perturbative expansion of the evolution operator is extensively used
in the scattering theory, where the scattering operator S can be
defined as

S = UI (−∞,+∞).

Long before the scattering, i.e. for t → −∞, and long after the
scattering, i.e. for t → +∞, the time evolution of the QM system
is described by the Hamiltonian H0 and we have to do with the
asymptotically free states.
In practice it is enough to assume that the time before and after
scattering is much longer than the time of interaction of the
projectile with the scattering centre.
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Scattering operator

According to our our definition, state |ψ(+∞)〉 of the QM system
for t → +∞ is related to the asymptotically free initial state
|i〉 ≡ |ψ(−∞)〉 for t → −∞ through the equation

|ψ(+∞)〉 = S |i〉 ,

where

H0 |i〉 = Ei |i〉 .

In the result of scattering the QM system can go to any QM state
of the full spectrum of H0:

H0 |f 〉 = Ef |f 〉 .

The probability amplitude of finding the QM system in the final
state |f 〉 is given by

〈f |ψ(+∞)〉 = 〈f |S |i〉 = Sfi ,

thus it is given by the matrix element of the operator S , which due
to this is often referred to as the scattering matrix.
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Scattering operator

The corresponding probability density is given by

|〈f |ψ(+∞)〉|2 .
We assume that the asymptotic states |f 〉 and |i〉 are normalized
to 1.
If we neglect bound states, which have a very small probability to
be formed for high energy projectiles, then we can also assume that
the exact states |ψ(t)〉 are normalized to 1, i.e.

〈ψ(+∞)|ψ(+∞)〉 = 1.

Now, we can decompose

|ψ(+∞)〉 =
∑

f

|f 〉 〈f |ψ(+∞)〉 =
∑

f

|f 〉 Sfi ,

where actually the integral should be used instead of the sum.
Hence

〈ψ(+∞)| =
∑

f

〈f | S∗fi .
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Scattering operator

Now we can use the normalisation condition

〈ψ(+∞)|ψ(+∞)〉 =
∑
f ,f ′

〈
f ′|S∗f ′i Sfi |f

〉
=
∑
f ,f ′

S∗f ′i Sfi

〈
f ′|f

〉
=
∑
f ,f ′

S∗f ′i Sfiδf ′f =
∑

f

|Sfi |2 = 1.

We can also write∑
f

|Sfi |2 =
∑

f

S∗fi Sfi =
∑

f

S†if Sfi = 1.

Thus we see that, if the probability of forming of bounds states is
neglected. we can write

S† = S−1,

which means that the scattering operator S is unitary.
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Scattering operator

Let us note that the first term in the expansion of the evolution
operator is equal to 1 ⇒ It will not change the initial state.
Therefore we write

S = 1 + T ,

and then the matrix elements have the form

Sfi = 〈f |S |i〉 = 〈f |i〉+ 〈f |T |i〉 = δfi + Tfi .

The eigenstates of the Hamiltonian H0 corresponding to different
energies are orthogonal, thus 〈f |i〉 6= 0 only if |f 〉 = |i〉.
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Perturbative expansion of T

It is obvious that operator T can be expanded into the
perturbative series

T =
∞∑

n=1

(−i)n

n!

∫
d4x1

∫
d4x2...

∫
d4xnT [HI (x1)HI (x2)...HI (xn)] ,

where we have put ~ = 1. In QED

HI (x) = −eψ̄(x)γµψ(x)Aµ(x).

Before we will be able to calculate matrix elements 〈f |T |i〉 the
classical fields ψ(x), ψ̄(x) and Aµ(x) in the definition of HI (x)
must be quantized.
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Momentum space representation and quantization

In the course of Quantum Mechanics we have shown that the
general solution of the free Dirac equation is a superposition of
solutions with positive and negative energy:

ψ(x) =
∑
α

∫
d3k

(2π)32E

[
c(~k, α)u(α)(k)e−ikx + d(~k, α)∗v (α)(k)e ikx

]
,

where k0 = E = +

√
~k2 + m2, the polarization index α takes 2

values, α = ±12 , which usually are chosen as

spin projection onto the Oz axis (canonical base) or

spin projection on the particle momentum (helicity base),

and the integration measure

d3k
(2π)32E

is Lorentz invariant.
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Momentum space representation

It can be easily shown that the general solution of the free Maxwell
equation

�Aµ(x) = 0, with the Lorentz condition ∂µAµ(x) = 0

can be written as

Aµ(x) =
∑
α=±1

∫
d3k

(2π)32E

[
a(~k, α)εµ(k , α)e−ikx + a∗(~k, α)εµ(k , α)∗e ikx

]
,

where k0 = E = |~k| and polarization vectors εµ(k, α) satisfy the
following conditions

kµε
µ(k, α) = 0, εµ(k, α′)∗εµ(k, α) = −δα′α.

Note that, although the photon is a spin 1 particle, α = ±1, as
polarization 0 is excluded for a massless particle.
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Momentum space representation and quantization

Quantization of the electromagnetic (EM) field Aµ(x) is not easy.
The problem is the U(1) gauge symmetry which is closely related
to the fact that the photon is massless. We will leave this issue
aside here and leave it to the course of QED.
At this point we only need to know that the EM field is quantized
by imposing the following commutation relations on the operators
a(~k , α) and a†(~k , α):

[a(~k ′, α′), a†(~k , α)] = −gα′αδ
(3)(~k ′ − ~k)

[a(~k ′, α′), a(~k, α)] = [a†(~k ′, α′), a†(~k , α)] = 0,

where polarization indices α, α′ = 0, 1, 2, 3.

We will show that such bosonic quantization rules for the operators
a(~k , α) and a†(~k , α) allow particle interpretation of them.
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Particle interpretation of operators a and a†

Assume that operators aα and a†α, where α stands for all possible
quantum numbers which are necessary to fully describe the QM
state, satisfy the following commutation rules

[aα, a
†
β] = δαβ, [aα, aβ] = [a†α, a

†
β] = 0.

Let us define operator Nα = a†αaα and consider its eigenequation

Nα |nα〉 = nα |nα〉 .
As operator Nα is Hermitian, its eigenvalues nα are real.

Let’s calculate commutators [Nα, aβ] and [Nα, a
†
β]

[Nα, aβ] = [a†αaα, aβ] = a†α[aα, aβ] + [a†α, aβ]aα = −δαβaα,

[Nα, a
†
β] = [a†αaα, a

†
β] = a†α[aα, a

†
β] + [a†α, a

†
β]aα = δαβa†α.

Let’s calculate

Nα(aα |nα〉) = aαNα |nα〉 − aα |nα〉 = aαnα |nα〉 − aα |nα〉
= nαaα |nα〉 − aα |nα〉 = (nα − 1)(aα |nα〉).
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Particle interpretation of operators a and a†

Thus, we see that vector aα |nα〉 is the eigenvector of Nα to
eigenvalue nα − 1.
Similarly

Nα(a†α |nα〉) = a†αNα |nα〉+ a†α |nα〉 = a†αnα |nα〉+ a†α |nα〉
= nαa†α |nα〉+ a†α |nα〉 = (nα + 1)(a†α |nα〉).

Thus, vector a†α |nα〉 is the eigenvector of Nα to eigenvalue nα + 1.

It is obvious that vector a2α |nα〉 = aαaα |nα〉 is the eigenvector of
Nα to eigenvalue nα − 2 and so on.
In this way, at some point we would reach negative values of nα,
which would exclude the particle interpretation of Nα, unless there
exists the vacuum state, with no bosons, defined by

aα |0〉 = 0, for any α.
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Particle interpretation of operators a and a†

Now, act with operator a†α on both sides of this equation

a†αaα |0〉 = 0 |0〉 = Nα |0〉 .

Thus, we see that the vacuum state corresponds to nα = 0.
Now, calculate

Nαa†α |0〉 = (0 + 1)a†α |0〉 = a†α |0〉 .

Thus, we can define the states with 1, 2, ... particles in the QM
state α by

|1α〉 = a†α |0〉 ,
|2α〉 = a†α |1α〉 = (a†α)2 |0〉 ,

for which nα = 1, 2, ....
We see that Nα can be interpreted as the particle number
operator, while aα and a†α as, respectively, annihilation and
creation operators of a particle in the QM state α.
There can be arbitrarily many bosons in the same QM state α.
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Particle interpretation of a and a†

If we look again at the quantization rules for the EM field

[a(~k ′, α′), a†(~k, α)] = −gα′αδ
(3)(~k ′ − ~k)

[a(~k ′, α′), a(~k, α)] = [a†(~k ′, α′), a†(~k , α)] = 0,

where polarization indices α, α′ = 0, 1, 2, 3, we will immediately
see that there is a problem with particle interpretation, as
operators a(~k , α) and a†(~k , α) change there roles for α = 0, i.e.
a(~k , 0) should be considered as the creation and a†(~k, 0) as the
annihilation operator of a scalar photon with momentum ~k .
The problem was solved by restricting the Hilbert space to the
physical subspace in which all the states |ψphys.〉 satisfy the
Lorentz condition in a weak form

∂µA(+)
µ (x) |ψphys.〉 = 0

It can be shown that due to this condition contributions from
photons of the scalar (α = 0) and longitudinal (α = 3)
polarizations to any physical observable cancel each other.

Karol Kołodziej Relativistic scattering theory 29/42



Particle interpretation of a and a†

If we look again at the quantization rules for the EM field

[a(~k ′, α′), a†(~k, α)] = −gα′αδ
(3)(~k ′ − ~k)

[a(~k ′, α′), a(~k, α)] = [a†(~k ′, α′), a†(~k , α)] = 0,

where polarization indices α, α′ = 0, 1, 2, 3, we will immediately
see that there is a problem with particle interpretation, as
operators a(~k , α) and a†(~k , α) change there roles for α = 0, i.e.
a(~k , 0) should be considered as the creation and a†(~k, 0) as the
annihilation operator of a scalar photon with momentum ~k .
The problem was solved by restricting the Hilbert space to the
physical subspace in which all the states |ψphys.〉 satisfy the
Lorentz condition in a weak form

∂µA(+)
µ (x) |ψphys.〉 = 0

It can be shown that due to this condition contributions from
photons of the scalar (α = 0) and longitudinal (α = 3)
polarizations to any physical observable cancel each other.

Karol Kołodziej Relativistic scattering theory 29/42



Particle interpretation of a and a†

If we look again at the quantization rules for the EM field

[a(~k ′, α′), a†(~k, α)] = −gα′αδ
(3)(~k ′ − ~k)

[a(~k ′, α′), a(~k, α)] = [a†(~k ′, α′), a†(~k , α)] = 0,

where polarization indices α, α′ = 0, 1, 2, 3, we will immediately
see that there is a problem with particle interpretation, as
operators a(~k , α) and a†(~k , α) change there roles for α = 0, i.e.
a(~k , 0) should be considered as the creation and a†(~k, 0) as the
annihilation operator of a scalar photon with momentum ~k .
The problem was solved by restricting the Hilbert space to the
physical subspace in which all the states |ψphys.〉 satisfy the
Lorentz condition in a weak form

∂µA(+)
µ (x) |ψphys.〉 = 0

It can be shown that due to this condition contributions from
photons of the scalar (α = 0) and longitudinal (α = 3)
polarizations to any physical observable cancel each other.

Karol Kołodziej Relativistic scattering theory 29/42



Particle interpretation of a and a†

Therefore, the free EM field can be written as a sum of the
positive (+) and negative (−) frequency parts

Aµ(x) = A(+)
µ (x) + A(−)

µ (x),

where

A(+)
µ (x) =

∑
α=±1

∫
d3k

(2π)32E
a(~k, α)εµ(k , α)e−ikx ,

A(−)
µ (x) =

∑
α=±1

∫
d3k

(2π)32E
a†(~k, α)εµ(k , α)∗e ikx ,

where k0 = E = |~k | and we sum only over transverse polarizations
(α = ±1).
We see, that operator A

(+)
µ (x) annihilates a photon of any

momentum ~k and polarization α at the space time point x .
Similarly, operator A

(−)
µ (x) creates a photon of any momentum ~k

and polarization α at this point.
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Quantization of a fermion fields

Assume that operators cα and c†α, where α stands for all possible
quantum numbers which are necessary to fully describe the QM
state, satisfy the following anti commutation rules

{cα, c†β} = δαβ, {cα, cβ} = {c†α, c
†
β} = 0.

Let’s define operator Nα = c†αcα and consider its eigenequation

Nα |nα〉 = nα |nα〉 .

We again need commutators [Nα, cβ] and [Nα, c
†
β].

Note that

[AB,C ] = ABC − CAB+ACB − ACB = A{B,C} − {A,C}B.

Thus

[Nα, cβ] = [c†αcα, cβ] = c†α{cα, cβ} − {c†α, cβ}cα = −δαβcα,

[Nα, c
†
β] = [c†αcα, c

†
β] = c†α{cα, c

†
β} − {c

†
α, c
†
β}cα = δαβc†α.
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Quantization of a fermion fields

Calculate

Nα(cα |nα〉) = cαNα |nα〉 − cα |nα〉 = cαnα |nα〉 − cα |nα〉
= nαcα |nα〉 − cα |nα〉 = (nα − 1)(cα |nα〉).

We see that vector cα |nα〉 is the eigenvector of Nα to eigenvalue
nα − 1. It means that operator cα annihilates a fermion in the QM
state α.
Similarly

Nα(c†α |nα〉) = c†αNα |nα〉+ c†α |nα〉 = c†αnα |nα〉+ c†α |nα〉
= nαc†α |nα〉+ c†α |nα〉 = (nα + 1)(c†α |nα〉).

Thus, vector c†α |nα〉 is the eigenvector of Nα to eigenvalue nα + 1.
It means that operator c†α creates a fermion in the QM state α.
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= nαcα |nα〉 − cα |nα〉 = (nα − 1)(cα |nα〉).

We see that vector cα |nα〉 is the eigenvector of Nα to eigenvalue
nα − 1. It means that operator cα annihilates a fermion in the QM
state α.
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Nα(c†α |nα〉) = c†αNα |nα〉+ c†α |nα〉 = c†αnα |nα〉+ c†α |nα〉
= nαc†α |nα〉+ c†α |nα〉 = (nα + 1)(c†α |nα〉).

Thus, vector c†α |nα〉 is the eigenvector of Nα to eigenvalue nα + 1.
It means that operator c†α creates a fermion in the QM state α.

Karol Kołodziej Relativistic scattering theory 32/42



Quantization of a fermion fields

Now, let us note that

N2α = c†αcαc†αcα = c†α(−c†αcα + 1)cα = −c†αc†αcαcα + c†αcα = Nα,

where, due to the anti commutation rules, we put
cαcα = c†αc†α = 0.
We have obtained the operator equation

N2α = Nα ⇒ (Nα − 1)Nα = 0

and hence for the eigenvalues we obtain

(Nα − 1)Nα |nα〉 = (nα − 1)nα |nα〉 = 0,

i.e., nα = 1 or nα = 0, which means that there can be just one or
no fermions in any QM state α.
This explains the Pauli exclusion principle that was introduced as a
postulate of QM.
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Momentum space representation and quantization

In quantum field theory (QFT) we impose the following anti
commutation relations on operators c(~k, α) and d(~k , α):

{c(~k ′, α′), c†(~k , α)} = {d(~k ′, α′), d†(~k , α)} = δα′αδ
(3)(~k ′ − ~k)

{c(~k ′, α′), c(~k, α)} = {d(~k ′, α′), d(~k , α)} = {c(~k ′, α′), d†(~k , α)} = 0

and write fermion fields ψ(x) and ψ̄(x) in the following form

ψ(x) = ψ(+)(x) + ψ(−)(x), ψ̄(x) = ψ̄(+)(x) + ψ̄(−)(x),

where

ψ(+)(x) =
∑
α

∫
d3k

(2π)32E
c(~k , α)u(α)(k)e−ikx ,

ψ(−)(x) =
∑
α

∫
d3k

(2π)32E
d†(~k , α)v (α)(k)e ikx ,

ψ̄(+)(x) =
∑
α

∫
d3k

(2π)32E
d(~k , α)v̄ (α)(k)e−ikx ,
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Momentum space representation and quantization

ψ̄(−)(x) =
∑
α

∫
d3k

(2π)32E
c†(~k, α)ū(α)(k)e ikx ,

with u(α)(k) and v (α)(k) being spinors of a particle and

antiparticle, respectively, and k0 = E = +

√
~k2 + m2.

Thus, we see that field operator

ψ(+)(x) annihilates a fermion,

ψ(−)(x) creates an antifermion,

ψ̄(+)(x) annihilates an antifermion,

ψ̄(−)(x) creates a fermion

of any momentum ~k and polarization state α.
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Quantization of fields

Imposing the bosonic quantization rules for operators a(~k, α) and
a†(~k , α) and fermionic quantization rules for operators c(~k, α),
c†(~k, α), d(~k , α) and d†(~k, α) is sometimes referred to as the
second quantization.
This is not correct, as those rules directly follow from the
quantization rules which we impose on fields and their conjugate
momenta.

The bosonic quantization rules for operators a(~k , α) and a†(~k, α)
are just a simple generalization of the quantization rules of QM
imposed on coordinates and conjugate momenta, with the only
difference that the field describes a physical system with infinite
(uncountable) number of degrees of freedom.
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Momentum space representation and quantization

For example, for the real scalar field ϕ(x), which is described by
the Lagrange density

L =
1
2
∂µϕ(x)∂µϕ(x)− 1

2
ϕ(x)2

we define the conjugate momentum by

π(t, ~x) =
∂L

∂ϕ̇(t, ~x)

and quntize it by imposing the following simultaneous
commutation relations (~ = c = 1)

[ϕ(t, ~x ′), π(t, ~x)] = iδ(3)(~x ′ − ~x),

[ϕ(t, ~x ′), ϕ(t, ~x)] = [π(t, ~x ′), π(t, ~x)] = 0,

which exactly correspond to the quantization rules of QM

[xi , pj ] = i~δij , [xi , xj ] = [pi , pj ] = 0.
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Perturbative expansion of Tfi

The derivation of the momentum representation of T is quite
involved, as the momentum representation of all the fields must be
inserted in every interaction Hamiltonian density HI (x) in the
expansion formula of the scattering operator T .
In QED, which is by far the simplest realistic QFT, we have

HI (x) = −eψ̄(x)γµψ(x)Aµ(x) = −e
(
ψ̄(+)(x) + ψ̄(−)(x)

)
γµ
(
ψ(+)(x) + ψ(−)(x)

) (
A(+)
µ (x) + A(−)

µ (x)
)
.

Thus, there are 8 terms for each appearance of the Hamiltonian
HI (x) in the perturbative series of Tfi , i.e. 8n terms in the n-th
term of the series

〈f |T |i〉 =
∞∑

n=1

(−i)n

n!

∫
d4x1...

∫
d4xn 〈f |T [:HI (x1): ... :HI (xn):] |i〉

≡
∞∑

n=1

〈
f |T (n)|i

〉
,
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Perturbative expansion of Tfi

where we have assumed that each term of <f |T (n)|i> is brought
to the so called normal order, where the annihilation operators
stand to the right and creation operators to the left, in order to
avoid infinities resulting from action of creation operators on the
vacuum |0〉, because of the plethora of operators we choose just
those which will annihilate the initial state to the vacuum and then
create the final state of a considered reaction.
To clarify this issue let’s find the normal order of

:HI := −e :
(
ψ̄(+) + ψ̄(−)

) (
/A(+) + /A(−)

) (
ψ(+) + ψ(−)

)
:

= −e :
(
ψ̄(+)

a /A
(+)
ab ψ

(+)
b + ψ̄(+)

a /A
(+)
ab ψ

(−)
b + ψ̄(+)

a /A
(−)
ab ψ

(+)
b + ψ̄(+)

a /A
(−)
ab ψ

(−)
b

+ψ̄(−)
a /A

(+)
ab ψ

(+)
b + ψ̄(−)

a /A
(+)
ab ψ

(−)
b + ψ̄(−)

a /A
(−)
ab ψ

(+)
b + ψ̄(−)

a /A
(−)
ab ψ

(−)
b

)
:

= −e
(
ψ̄(+)

a /A
(+)
ab ψ

(+)
b − ψ(−)

b ψ̄(+)
a /A

(+)
ab + ψ̄(+)

a /A
(−)
ab ψ

(+)
b − ψ(−)

b ψ̄(+)
a /A

(−)
ab

+ψ̄(−)
a /A

(+)
ab ψ

(+)
b + ψ̄(−)

a /A
(+)
ab ψ

(−)
b + ψ̄(−)

a /A
(−)
ab ψ

(+)
b + ψ̄(−)

a /A
(−)
ab ψ

(−)
b

)
,

where we have assumed that all operators (anti-)commute,
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Perturbative expansion of Tfi

i.e. the right hand sides of the corresponding (anti-)commutation
relations are discarded.
All the remaining operators in <f |T (n)|i> must be joined to form
the Feynman propagators, which are Green’s functions defined in
the following way

iSF (x − x ′) ≡
〈

0|T (ψ(x)ψ̄(x ′))|0
〉
,

with

T (ψ(x)ψ̄(x ′)) = θ(t − t ′)ψ(x)ψ̄(x ′)− θ(t ′ − t)ψ̄(x ′)ψ(x)

for the fermionic field and

iDµν
F (x − x ′) ≡

〈
0|T

(
Aµ(x)Aν(x ′)

)
|0
〉
,

with

T
(
Aµ(x)Aν(x ′)

)
= θ(t − t ′)Aµ(x)Aν(x ′) + θ(t ′ − t)Aν(x ′)Aµ(x),

for the photon field.
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Perturbative expansion of Tfi

How exactly this done is strictly described by the Wick’s theorem
which can be proved in QFT.
Here we only need to know the Fourier transforms of the Feynman
propagator of a fermion and a photon which read as follows

iSF (x − x ′) =

∫
d4k

(2π)4
i

/k + m

k2 −m2 + iε
e−ik(x−x ′),

iDµν
F (x − x ′) =

∫
d4k

(2π)4
i
−gµν

k2 + iε
e−ik(x−x ′),

where the photon propagator is defined in the Feynman gauge.
Due to the U(1) gauge symmetry of QED the gauge choice is
arbitrary and the Feynman gauge is the simplest and most
convenient choice for most applications.
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Perturbative expansion of Tfi

It can be also shown that the space integral of the exponential
factors e±ikx in the Fourier transforms of the Feynman propagators
and field operators always result in the following factorization of
the matrix element Tfi

Tfi = (2π)4δ(4)(
∑

i

pi −
∑

f

pf )Mfi .

The factor

(2π)4δ(4)(
∑

i

pi −
∑

f

pf )

is usually associated with the Lorentz invariant phase space
element dLips, as we did in the derivation of the relativistic cross
section formula.

As an example, let us calculate the cross section of

e+e− → l+l−, where l = µ, τ.
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