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The Schrédinger equation
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can be obtained by substituting

0 -
E— ih— p— —ihV
ot P
in a non relativistic formula for the total mechanical energy of a
particle

p>
E=—+V
oy TV(ILE).
The Schrodinger equation describes motion of a non relativistic
spinless particle of mass m in a field of the force

F(F t) = =V V(F,t).



The kinetic energy of a free particle is given by a non relativistic
formula
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The kinetic energy of a free particle is given by a non relativistic

formula
_
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and the Schrodinger equation in this case takes the form

Mot = Tam Y
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The kinetic energy of a free particle is given by a non relativistic
formula

_ P

2m

and the Schrodinger equation in this case takes the form

8w FL2 —‘2
Mot = Tam Y

The squared module of the wave function [ (7, t)|? is interpreted
as probability density of finding the particle in the spatial volume

element d3r = dxdydz around the point 7 at the time t.
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We can define the probability current for a spinless non relativistic
particle as the vector

S(7, 1) = — 2 [y — (Vu) o]

" 2m
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We can define the probability current for a spinless non relativistic
particle as the vector

§(71 1) = [T — (F0°) ¥]

which, together with the probability density |¢(7, t)|?, satisfies the
following continuity equation

9 22 L. (7 ) —
a|1z)(r,t)| +V.5(r,t)=0.
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It seems that the simplest way to obtain a relativistic wave
equation would be the following substitution

E— ih%, p— —ihV
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It seems that the simplest way to obtain a relativistic wave
equation would be the following substitution

E— ih%, p— —ihV

to the relativistic relationship between momentum and energy of a

particle of mass m
E? — 2 = mct,

where ¢ is the speed of light in vacuum.
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Let us remind that the relationship E2 — p?c? = m?c* is Lorentz

invariant, as it can be derived by calculating the inner (dot)
product of the energy-momentum four vector

E _
plt = <,p>
C

with itself.
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Let us remind that the relationship E2 — p?c? = m?c* is Lorentz

invariant, as it can be derived by calculating the inner (dot)
product of the energy-momentum four vector

E |
pt = <,p>
C
with itself.

The dot product of any two four vectors in Minkowski's space time
is by definition invariant with respect to Lorentz transformations.
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Let us remind that the relationship E2 — p?c? = m?c* is Lorentz

invariant, as it can be derived by calculating the inner (dot)
product of the energy-momentum four vector

E |
pt = <,p>
C
with itself.

The dot product of any two four vectors in Minkowski's space time
is by definition invariant with respect to Lorentz transformations.
Let us calculate

p>=p-p=p.p=

Dirac Equation 6/44



Let us remind that the relationship E2 — p?c? = m?c* is Lorentz

invariant, as it can be derived by calculating the inner (dot)
product of the energy-momentum four vector

E |
pt = <,p>
C
with itself.

The dot product of any two four vectors in Minkowski's space time
is by definition invariant with respect to Lorentz transformations.
Let us calculate

2 -
p’=p-p=pup=p"" - p*=
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Let us remind that the relationship E2 — p?c? = m?c* is Lorentz

invariant, as it can be derived by calculating the inner (dot)
product of the energy-momentum four vector

E |
pt = <,p>
C
with itself.

The dot product of any two four vectors in Minkowski's space time
is by definition invariant with respect to Lorentz transformations.
Let us calculate
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Let us remind that

E=ymc®,  F=ymv,

where the Lorentz factor ~y is given by
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Let us remind that

E = ymc?, p=ymv,
where the Lorentz factor ~y is given by
B 1
v = -
Hence
2 =2
E 5 2 (m2c2 _ mzvz) — m2c242 <1 _ ;) _
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Let us remind that

E = ymc?, p=ymv,
where the Lorentz factor ~y is given by
B 1
v = -
Hence
E2 2 (mzcz _ mzvz) — mPc24? <1 _ Z) — m2c2?
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We got the equation

which after multiplying its both sides by c? gives our starting

relationship E? — p?c® = m*c*.
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We got the equation

which after multiplying its both sides by c? gives our starting
relationship E? — p?c® = m*c*.

Substituting

E— ih%, B — —ihV
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We got the equation

which after multiplying its both sides by c? gives our starting
relationship E? — p?c® = m*c*.
Substituting
E—inl 5 — —ihV
— (h— — =i
ot’ P

in it we get the relativistic wave equation

0? - . .
l—hz act)? + h2V2] o(t,X) = m?cyp(t, X).
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Dividing both sides of the equation

o(t,X) = m2c2cp(t, X)

hZ 82 h2§2
M oteE T

by —Ah? after having shifted m?c?¢(t, X) to the l.h.s. we get the
equation
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Dividing both sides of the equation

o(t,X) = m2c2cp(t, X)

hZ 82 h2§2
M oteE T

by —Ah? after having shifted m?c?¢(t, X) to the l.h.s. we get the
equation

H? =5 m?c? .
[3(ct)2_v T | #e0=0
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Dividing both sides of the equation

o(t,X) = m2c2cp(t, X)

hZ 82 h2§2
M oteE T

by —Ah? after having shifted m?c?¢(t, X) to the l.h.s. we get the
equation

l 52 L,  mPc?

W—V + 2 ]g@(t,f{):O.

Let us define the time-space four vector
x = xt = (x9 %) = (ct, X), then
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Dividing both sides of the equation

o2 -
[—hz + h2V2| p(t, %) = m*c?p(t, X)

d(ct)?

by —Ah? after having shifted m?c?¢(t, X) to the l.h.s. we get the
equation

l 52 L,  mPc?

W—V + 2 ]g@(t,f{):O.

Let us define the time-space four vector
x = xt = (x9 %) = (ct, X), then

2 L, 82 82 52
d(ct)? T 0x0% 9x1Z gx22 g x32
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Dividing both sides of the equation

o(t,X) = m2c2cp(t, X)

hZ 82 h2§2
M oteE T

by —Ah? after having shifted m?c?¢(t, X) to the l.h.s. we get the
equation

l 52 L,  mPc?

W—V + 2 ]g@(t,f{):O.

Let us define the time-space four vector
x = xt = (x9 %) = (ct, X), then

2 L, 82 82 52
d(ct)? T 0x0% 9x1Z gx22 g x32

=[],
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where we have introduced symbol [J to denote the d'Alembert
operator.
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where we have introduced symbol [J to denote the d'Alembert

operator. -
Moreover, let us denote ,u2 = ’"hf , then the equation
9?2 =5 m?c2 .
[W—V +? gD(t,X):O

takes the simple form
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where we have introduced symbol [J to denote the d'Alembert

operator. -
Moreover, let us denote ,u2 = ’"hf , then the equation
9?2 =5 m?c2 .
[W—V +? gD(t,X):O

takes the simple form

(D + ,uz) o(x) = 0.
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where we have introduced symbol [J to denote the d'Alembert

operator. -
Moreover, let us denote ,u2 = ’"hf , then the equation
9?2 =5 m?c2 .
[W—V +? gD(t,X):O

takes the simple form

(D + ,uz) o(x) = 0.

This is the Klein-Gordon wave equation.
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Despite being realistically invariant, the Klein-Gordon equation has
some shortcomings which make it practically useless for the sake of
quantum mechanical description of a relativistic particle, as e.g.
electron.
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If the wave function in the Klein-Gordon equation is complex, then
we can define the probability current

JH(x) = i [ (x)0"p(x) — 0" (¢"(x)) @(x)] = (p(x),(x)),
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where we have introduced a shorthand notation for the differential
operator
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Despite being realistically invariant, the Klein-Gordon equation has
some shortcomings which make it practically useless for the sake of
quantum mechanical description of a relativistic particle, as e.g.
electron.

We will discuss those shortcomings in the following.

If the wave function in the Klein-Gordon equation is complex, then
we can define the probability current

JH(x) = i [ (x)0"p(x) — 0" (¢"(x)) @(x)] = (p(x),(x)),

where we have introduced a shorthand notation for the differential
operator

o

0
0= G = o
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Exercise. Show that 0, is a covariant and 0* is a contravariant
four vector.
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The current j#(x) satisfies the following continuity equation

8,j"(x) = 0.

Dirac Equation 12/44



Exercise. Show that 0, is a covariant and 0* is a contravariant
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In order to prove this statement let us first write down the
Klein-Gordon equation for the complex conjugate wave function

©*(x).
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Exercise. Show that 0, is a covariant and 0* is a contravariant
four vector.
The current j#(x) satisfies the following continuity equation

8,j"(x) = 0.

In order to prove this statement let us first write down the
Klein-Gordon equation for the complex conjugate wave function

©*(x).
To this end let us conjugate the Klein-Gordon equation

(D + ,u2> ©*(x) =0.

Where we have used the fact that both the d’Alembert operator [
and the parameter ;2 are real.
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Let us now calculate the four divergence of the current j#(x)
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Let us now calculate the four divergence of the current j#(x)

I'(x) = i0u[p"(x)0"p(x) = 0" (¢"(x)) ¢(x)]
i [0up™ (x)0"@(x) + ™ (x)0,0"p(x)
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Let us now calculate the four divergence of the current j#(x)

Oit'(x) = i0u[e*(x)0"p(x) — 0" (¢"(x)) p(x)]
= i[0up"(x)0"p(x) + ¢*(x)0n a“«p(X)
—80,0" (¢%(x)) p(x) — 0"¢"(x)Opp(x)]
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Let us now calculate the four divergence of the current j#(x)

Oy (x)

i0u [0 (x)0"p(x) — 9" (" (x)) (x)]
= i[0up"(x)0"p(x) + ¢*(x)0n a“«p(X)
—80,0" (¢%(x)) p(x) — 0"¢"(x)Opp(x)]
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Let us now calculate the four divergence of the current j#(x)

Oy (x)

i0 [ (x)0"p(x) — 0" (9" (x)) ¢(x)]
= i[0up"(x)0"p(x) + ¢*(x)0u0" o (x)
—0,0" (¢"(x)) p(x) — 0"" (x)uip(x)]
i[e* ()Be(x) — O (™ (x)) e(x)]
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Let us now calculate the four divergence of the current j#(x)

Ot (x) = i0u[p"(x)0"p(x) — 0" (¢*(x)) p(x)]
= i[0up"(x)0"p(x) + ¢*(x)0u0" o (x)
—0,0" (¢"(x)) p(x) — 0"" (x)uip(x)]
= i[p"(x)8e(x) — O (¢"(x)) ¢(x)]
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Let us now calculate the four divergence of the current j#(x)

Q' (x) = 10" (x)0"p(x) — 0" ("(x)) o (x)]
= i[0up"(x)0"@(x) + " (x)0,0" ()
—0,0" (" (x)) 9(x) = 00" (x)Dup (X))
= i[p"(x)0¢(x) = O (9" () o(x)]
= i [¢ ((=1R)p(x) + 126" (X (x)
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Let us now calculate the four divergence of the current j#(x)

Q' (x) = 10" (x)0"p(x) — 0" ("(x)) o (x)]
= i[0up"(x)0"p(x) + ¢*(x)0n a“«p(X)
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Let us now calculate the four divergence of the current j#(x)

Oit'(x) = i0u[e*(x)0"p(x) — 0" (¢"(x)) p(x)]
= i[0up"(x)0"p(x) + ¢*(x)0n a“«p(X)
—80,0" (¢%(x)) p(x) — 0"¢"(x)Opp(x)]

= i[e*(x)0e(x) — O(e*(x)) sO(X)]

= i [¢" ()(=1A)p(x) + 12" (x)e(x)] =0,

where we have used the Klein-Gordon equation and its complex
conjugate

(D + MZ) e(x)=0
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Let us now calculate the four divergence of the current j#(x)
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Let us now calculate the four divergence of the current j#(x)

Oit'(x) = i0u[e*(x)0"p(x) — 0" (¢"(x)) p(x)]
= i[0up"(x)0"p(x) + ¢*(x)0n a“«p(X)
—80,0" (¢%(x)) p(x) — 0"¢"(x)Opp(x)]

= i[e*(x)0e(x) — O(e*(x)) sO(X)]

= i [¢" ()(=1A)p(x) + 12" (x)e(x)] =0,

where we have used the Klein-Gordon equation and its complex
conjugate

O+) et =0 = Dp(x) = —1e(x),
(D + u2) e'(x)=0 =

Dirac Equation 13/44



Let us now calculate the four divergence of the current j#(x)

Oit'(x) = i0u[e*(x)0"p(x) — 0" (¢"(x)) p(x)]
= i[0up"(x)0"p(x) + ¢*(x)0n a“«p(X)
—80,0" (¢%(x)) p(x) — 0"¢"(x)Opp(x)]

= i[e*(x)0e(x) — O(e*(x)) sO(X)]

= i [¢" ()(=1A)p(x) + 12" (x)e(x)] =0,

where we have used the Klein-Gordon equation and its complex
conjugate

(O+m)e(x)=0 =  DOpx) = —pp(x),
(O+2) () =0 =  Op'(x) = —p2¢"(x).
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We would like to interpret the zeroth component j%(x) of the
current j#(x) as the probability density p(x) of finding a particle in
the spatial volume element d3x at time ¢.
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We would like to interpret the zeroth component j%(x) of the
current j#(x) as the probability density p(x) of finding a particle in
the spatial volume element d3x at time ¢.

Unfortunately,

p(x) = i 9" ()8%p(x) = 8° (#"(x)) ¢(x))]

is not a positively defined quantity, which in practice excludes the
probabilistic interpretation of the wave function ¢(x).
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We would like to interpret the zeroth component j%(x) of the
current j#(x) as the probability density p(x) of finding a particle in
the spatial volume element d3x at time ¢.

Unfortunately,

p(x) = i 9" ()8%p(x) = 8° (#"(x)) ¢(x))]

is not a positively defined quantity, which in practice excludes the
probabilistic interpretation of the wave function ¢(x).
Moreover, if the wave function ¢(x) of the Klein-Gordon equation
is real, then the current j*(x) is identically equal to 0.
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If, in spite of that, we assumed that |¢(x)|? is the probability
density of finding a particle in the spatial volume element d3x at
time t, then the probability normalization integral

[1ete 0l ¢ =1

would not be time conserved.
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If, in spite of that, we assumed that |¢(x)|? is the probability
density of finding a particle in the spatial volume element d3x at
time t, then the probability normalization integral

[1ete 0l ¢ =1

would not be time conserved.

Another problem is related to the fact that there is the second
derivative with respect to time in the Klein-Gordon equation, while
we would like the relativistic wave equation to have the form
analogous to the Schrodinger equation, i.e.

in0v(x)
ot

= Hip(x).
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If we take the square root of the relationship E? — p?c? = m?c?,

then we obtain the relativistic formula for the particle energy

E = 4+/p%c? + m2c*.
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If we take the square root of the relationship E? — p?c? = m?c?,

then we obtain the relativistic formula for the particle energy

E = 4+/p%c? + m2c*.

We want the particle energy to be positive, thus we choose

E = \/p?c? + m2c*.
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If we take the square root of the relationship E? — p?c? = m?c?,
then we obtain the relativistic formula for the particle energy

E = 4+/p%c? + m2c*.

We want the particle energy to be positive, thus we choose

E = \/p?c? + m2c*.

If we now substitute

E— ihaat, g — —ihV

into this formula, we would end up with the integral operator on
the r.h.s. of the corresponding wave equation.
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To see this let us Fourier transform the wave function

U(t, X) ke 'kxzp(t K).
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To see this let us Fourier transform the wave function

U(t, X) ke 'kxzp(t K).

Then

—ikVi(t, %) =

/d3 (—in%) e *(t, k)

3
2
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To see this let us Fourier transform the wave function

P(t, X)

ke ik-% le(t k)

Then

—ikVi(t, %) =

%/d3 (—in)e R % (¢, )
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To see this let us Fourier transform the wave function

o(t,X)

ke ik-% le(t k)

Then

o [ i) e,
§/d3/< hk <% (t, k).
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To see this let us Fourier transform the wave function

o(t,X)

ke ik-% le(t k)

Then

o [ i) e,
§/d3/< hk <% (t, k).

Exercise. Show that
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Now let us calculate

\/—h2c2§2 + m2cty(t,X) =
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Now let us calculate

\/—h2c2§2 + m2cty(t,x) = ! /d3k\/ h2c2k? + m2c4e"E‘%zZ(t, K).

(2m)?
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Now let us calculate

- 1 - e
\/—h2c2V2 + m?ct(t, X) = /d3k\/ h2c?k? + m2cte'**Y(t, k).

(2m)?

In order to have the wave function 9 (t, X) on the r.h.s. we have to
perform an inverse Fourier transformation

= . 1 3 3
\/—h2c2V2+ m2ct)(t,xX) = EE /d x’/d k

\ 22k + m2c4e"E'(;_)?/)¢(t, X).
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Now let us calculate

- 1 - e
\/—h2c2V2 + m?ct(t, X) = /d3k\/ h2c?k? + m2cte'**Y(t, k).

(2m)?

In order to have the wave function 9 (t, X) on the r.h.s. we have to
perform an inverse Fourier transformation

> . 1 3 3
\/—h2c2V2+ m2ctip(t,xX) = EE /d x’/d k

\ 22k + m2c4e"E'(;_)?/)¢(t, X).

We see that the operator on l.h.s. is an integral operator.
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Now let us calculate

- 1 - e
\/—h2c2V2 + m?ct(t, X) = /d3k\/ h2c?k? + m2cte'**Y(t, k).

(2m)?

In order to have the wave function 9 (t, X) on the r.h.s. we have to
perform an inverse Fourier transformation

> . 1 3 3
\/—h2c2V2+ m2ctip(t,xX) = EE /d x’/d k

\ 22k + m2c4e"E'(;_)?/)¢(t, X).

We see that the operator on l.h.s. is an integral operator. It is not
a linear operator either.
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Now let us calculate
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\/—h2c2V2 + m?ct(t, X) = /d3k\/ h2c?k? + m2cte'**Y(t, k).

(2m)?

In order to have the wave function 9 (t, X) on the r.h.s. we have to
perform an inverse Fourier transformation

> . 1 3 3
\/—h2c2V2+ m2ctip(t,xX) = EE /d x’/d k

\ 22k + m2c4e"E'(;_)?/)¢(t, X).

We see that the operator on l.h.s. is an integral operator. It is not
a linear operator either.
To circumvent those problems we will proceed in a different way.
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Let us assume that the Hamiltonian in the relativistic wave
equation

i 9v ()

e = Hi()

can be expressed in the following form

H=a -p+Fm
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Let us assume that the Hamiltonian in the relativistic wave
equation

i 9v ()

e = Hi()

can be expressed in the following form
H=a -p+Fm
such that

H2 = 5% + m?.
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Let us assume that the Hamiltonian in the relativistic wave
equation

i 9v ()

e = Hi()

can be expressed in the following form
H=a -p+Fm

such that

We use hear natural units, where

h=1 and c=1.
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Let us calculate square of the Hamilton operator

H? = (cipi+ Bm)(ajp; + Bm)
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Let us calculate square of the Hamilton operator

H? = (cipi+ Bm)(ajp; + Bm)
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Let us calculate square of the Hamilton operator

H*> = (aipi + Bm)(ajp; + Bm)
= aja;pip; + aipim+ Bma;p; + 2 m?
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Let us calculate square of the Hamilton operator

H*> = (aipi + Bm)(ajp; + Bm)
= aja;pip; + aipim+ Bma;p; + 2 m?
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Let us calculate square of the Hamilton operator
(aipi + Bm)(ajpj + Bm)
= aipip; + aipiim + Bma;p; + 32 m’

1
§w%mm+zwmmm+aﬁmm+ﬁmmm+ﬂ%F
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Let us calculate square of the Hamilton operator

H*> = (aipi + Bm)(ajp; + Bm)
= aja;pip; + aipim+ Bma;p; + 2 m?

1 1
S Qi Pip; + 5 0GQip;pi + aifmp; + Saimp; + 3m?
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Let us calculate square of the Hamilton operator
H? = (cipi+ Bm)(ajp; + Bm)
= qjajpipj + aipiim + Bmajp; + 7 m?

1 1
= 50i0jpipj + S 0yQip;pi + aiimp; + Baimpi + 3m?

2

1
= laiaj +ajai)pip; + (aif + fai)mp; + F2m?,
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Let us calculate square of the Hamilton operator

H*> = (aipi + Bm)(ajp; + Bm)
= aja;pip; + aipim+ Bma;p; + 2 m?

1 1
= 50i0jpipj + S 0yQip;pi + aiimp; + Baimpi + 3m?

2
1
= E(Oéiaj + aje)pipj + (i3 + Bay)mp; + B2m?,

where we have symmetrized the coefficient of the p;p; term in
order to avoid possible cancellations between coefficients in front
of pip; and p;p;.
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On the other hand, we want that

H? = pip; + m?
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On the other hand, we want that

H? = pipi + m* = §;pip; + m*,
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On the other hand, we want that

H? = pipi + m* = §;;pipj + m?,

where the coefficient of p;p; is already symmetric.
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On the other hand, we want that

H? = pipi + m* = §;pip; + m’,
where the coefficient of p;p; is already symmetric.
Let us compare both formula for H2.

1

5 (@iaj +ajai)pip; + (aiff + Sai)mp; + 32m? = §;pipj + m’.

Dirac Equation 21/44



On the other hand, we want that

H? = pipi + m’* = 0;pipj + m’,

where the coefficient of p;p; is already symmetric.
Let us compare both formula for H2.

1
5laiaj + ajai)pip; + (aif + fai)mp; + 32m? = §;pipj + m’.

Thus we see that the following relationships must hold

ajoj + ajo; = 2651, aif+fa; =0, P =1L
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On the other hand, we want that

H? = pipi + m’* = 0;pipj + m’,

where the coefficient of p;p; is already symmetric.
Let us compare both formula for H2.

1
5laiaj + ajai)pip; + (aif + fai)mp; + Fm? = bpip; + m.

Thus we see that the following relationships must hold
ajaj + ajog = 2(5,'J']I, aif + Pa; =0, 52 =1

It is obvious that «j, i =1,2,3, and 8 must be matrices, and
hence I must be a unit matrix.
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

al =a;, =123, =5
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
What is their dimension?
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
What is their dimension?
Assume i # j, then

aiaj + ajaj = 2(5,]‘]1 =0
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
What is their dimension?
Assume i # j, then

aiaj + ajaj = 2(5,]‘]1 =0 = Qi = —ojQ;.
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
What is their dimension?
Assume i # j, then

aiaj + ajaj = 2(5,]‘]1 =0 = Qi = —ojQ;.
Calculate the determinant of both sides

det(a,-aj) = det(—ajoz,-)
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
What is their dimension?
Assume i # j, then

aiaj + ajaj = 2(5,]‘]1 =0 = Qi = —ojQ;.
Calculate the determinant of both sides

det(a,-aj) = det(—ajoz,-) = (—l)ddet(a,-aj),
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In order the Hamiltonian H = «a;jp; + Gm to be Hermitian, the
matrices «; and 8 must be Hermitian themselves, i.e.

Oé;'r:af7 i:172737 BT:ﬁa

thus they are squared matrices.
What is their dimension?
Assume i # j, then

aiaj + ajaj = 2(5,]‘]1 =0 = Qi = —ojQ;.
Calculate the determinant of both sides
det(a,-aj) = det(—ajoz,-) = (—l)ddet(a,-aj),

where d x d is the dimension of matrix «;.
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Thus we see that d must be an even number for matrix «;.
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Thus we see that d must be an even number for matrix «;.
The same holds obviously for matrix 5.
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Thus we see that d must be an even number for matrix «;.
The same holds obviously for matrix 5.
The smallest nontrivial choice would be d = 2.
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Thus we see that d must be an even number for matrix «;.
The same holds obviously for matrix 5.

The smallest nontrivial choice would be d = 2.

There are Hermitian 2 x 2 matrices which satisfy analogous
relationships as those for a; and

ajoj + ajag = 25,'J'H, Oéiﬁ + Bai =0, 52 =1L
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Thus we see that d must be an even number for matrix «;.
The same holds obviously for matrix 5.

The smallest nontrivial choice would be d = 2.

There are Hermitian 2 x 2 matrices which satisfy analogous
relationships as those for a; and

ajoj + ajag = 25,'J'H, Oéiﬁ + Bai =0, ﬁ2 =1L

They are commonly known as the Pauli matrices

(01 (0 —i (1 o0
=\V10) 27 o) BT\lo 1)
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Thus we see that d must be an even number for matrix «;.
The same holds obviously for matrix 5.

The smallest nontrivial choice would be d = 2.

There are Hermitian 2 x 2 matrices which satisfy analogous
relationships as those for a; and

ajoj + ajag = 25,'J'H, Oéiﬁ + Bai =0, ﬁ2 =1L

They are commonly known as the Pauli matrices

(01 (0 —i (1 o0
=\V10) 27 o) BT\lo 1)

for which it holds ojo; + ojo; = 24}, i,j=1,2,3.
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However, the fourth matrix is missing for d = 2.
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However, the fourth matrix is missing for d = 2.
Thus, let us choose d = 4.
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However, the fourth matrix is missing for d = 2.

Thus, let us choose d = 4.

Before we find an explicit form of the matrices «; and 3 satisfying
the desired relationships we define new matrices v*, ©=0,1,2,3,

V=6, A =pa, =123
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However, the fourth matrix is missing for d = 2.

Thus, let us choose d = 4.

Before we find an explicit form of the matrices «; and 3 satisfying
the desired relationships we define new matrices v, ©=20,1,2,3,

=3, v = Baj, i=1,2,3.

Let us assume A = ¢ = 1 and multiply the equation

O0Y(x
/ zg(t ) _ (aipi + Bm)y(x)
by (8 from the left and substitute p; = —i0;, then we get
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However, the fourth matrix is missing for d = 2.

Thus, let us choose d = 4.

Before we find an explicit form of the matrices «; and 3 satisfying
the desired relationships we define new matrices v, ©=20,1,2,3,

=3, v = Baj, i=1,2,3.

Let us assume A = ¢ = 1 and multiply the equation

O0Y(x
/ zg(t ) _ (aipi + Bm)y(x)
by (8 from the left and substitute p; = —i0;, then we get
I(x)

i35 = (Bai(=idy) + 57m) (x).
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99 (x)

i35 = (Bai(—idr) + 3m) $(x).

ot




822 _ (Boi(—ivn) + ) wi).

Let us use the condition 32 =1, insert definitions of matrices v*:
7% =6, v = Baj, i =1,2,3, and shift everything to the |.h.s. of
the equation
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822 _ (Boi(—ivn) + ) wi).

Let us use the condition 32 =1, insert definitions of matrices v*:
7% =6, v = Baj, i =1,2,3, and shift everything to the |.h.s. of
the equation

(iyoﬁo + iy — m) P(x) =0.
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822 _ (Boi(—ivn) + ) wi).

Let us use the condition 32 =1, insert definitions of matrices v*:
7% =6, v = Baj, i =1,2,3, and shift everything to the |.h.s. of
the equation

(iyoﬁo + iy — m) P(x) =0.

Combining the first and the second term in the parentheses we
obtain the Dirac equation in the following form

(iv*0, — m)y(x) = 0.
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Let us define symbol @ = ~*0,,.
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.

7t =gt
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.

Pl =gt =5
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.

Pl =gt =p=1"
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i§ = m)y(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.

W= p=8=1" 4 =(Ba)!
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i) — m)(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.

PT=pl=p=1" "= (Ba) =o'
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i — m)w(x) = .
We still have to find matrices v* which satisfy the desired

properties.
Let us verify properties of v*'s under Hermitian conjugation.

P =pl=5=9" 7' =(Ba) = alB = i
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i — m)w(x) = .
We still have to find matrices v* which satisfy the desired

properties.
Let us verify properties of v*'s under Hermitian conjugation.

PT=pl=p=1° 4" =(Ba) =alpl =i = —pa;
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Let us define symbol ¢ = v#0,,. With it, the Dirac equation takes
a simple form

(i) — m)(x) = 0.

We still have to find matrices v* which satisfy the desired
properties.
Let us verify properties of v*'s under Hermitian conjugation.

T =gt =p=1°, 7= (Bai)T = ol 8T = ;8 = —Bai = ',
where we have used the following properties

(AB)f = BTAT and i+ Bai =0, i=1,23.
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And now check the commutation properties of v#'s: 40 = 3,
v = PBa;, i =1,2,3.
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ajoj + ajo; = 2651, aif+faj =0, P =1L
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

’YO’Yi
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

1 = BB
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

Oy = BBai = B(—aiB)
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

Py = BBa; = B(—aif) = —Ba;B
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

V9 = BBa; = B(~aif) = —faif = —7'1°
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

' = BBa; = B(~aif) = —Baif = —4'"°
= ,YO,YI_’_VI,)/O:O'
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

' = BBa; = B(~aif) = —Baif = —4'"°
= ,YO,YI_’_VI,)/O:O'
'y
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

" = BBai = B(~aif) = —Baif = —y'"°
- A0 4 4in0 = 0,
Yy = Baifa;
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

V9 = BBa; = B(~aif) = —faif = —7'1°
N A0~ 4 iy = 0.
Yy = Baifaj = Bai(—a;f)
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

V9 = BBa; = B(~aif) = —faif = —7'1°
- 70’7i+7i70=0~
VY = Baiba; = fai(—a;B) = —Baia;p
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ooy + ajo; = 2051, aiff + o =0, =1
Let us calculate

V9 = BBa; = B(~aif) = —faif = —7'1°
N V07 4 4iy0 = 0.
’Yi’Yj = faifaj= ﬂai(—ajﬂ) = —Bajo;ff = —ﬂ(—ogoz,— + 26U)ﬂ
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ajoj + ajo; = 2051, a;f + Baj =0, 5% =1
Let us calculate
' = BBa; = B(~aif) = —Baif = —4'"°
= ’70’7I+7”70:0~
Yy = Baifaj = pai(—a;f) = —Paja;f = —B(—ajo; + 20j)6
= ﬁaja,ﬂ — 2(5,‘1',62
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ajoj + ajo; = 2651, aif+faj =0, P =1L
Let us calculate
Py = BBai = B(—aif) = —Baif = —'1°
- ,YO,YI_’_/YI,)/O:O.
Yy = Baifaj = pai(—a;f) = —Paja;f = —B(—ajo; + 20j)6
= ﬁajaiﬁ - 2(5,'1',62 = —ﬂajﬂa,- — 2(5,'J']I
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ajoj + ajo; = 2651, aif+faj =0, P =1L
Let us calculate
Py = BBai = B(—aif) = —Baif = —'1°
- ,YO,YI_’_/YI,)/O:O.
Yy = Baifaj = pai(—a;f) = —Paja;f = —B(—ajo; + 20j)6
= ﬁajaiﬂ — 25’.!/62 = —ﬂajﬁai — 2(5’.1]1 = —’yj"}/i — 26’JH
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And now check the commutation properties of v#'s: 40 = 3,
v = Baj, i = 1,2,3. Remember that

ajoj + ajo; = 2651, aif+faj =0, P =1L
Let us calculate
Oy = BBa; = B(—aif) = —Baif = —7'°
= ,YO,YI_’_/YI,)/O:O.
Yy = Baifaj = pai(—a;f) = —Paja;f = —B(—ajo; + 20j)6
= ﬁajaiﬂ — 25’.!/62 = —ﬂajﬁai — 2(5’.1]1 = —’yj"}/i - 26’JH
= Y+ =260
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Let us summarize our results

¥ +47° = o,
Y'Y+ = =200

and recall the form of the metric tensor

1 0 0 0
o o1 0 0
Eiw =8 =109 0 -1 0
0O 0 0 -1

Dirac Equation 28/44



Let us summarize our results

¥ +47° = o,
Y'Y+ = =200

and recall the form of the metric tensor

1 0 O 0
w0 -1 0 0
Eiw =8 =109 0 -1 0
0 0O 0 -1
We see that

Pyt =28,

where I is the unit 4 x 4 matrix.
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The equations

{V, 4" =1y Ay =28, pr=0,1,2,3,

together with the Hermiticity properties fyOT =19 yiT = —f
can be considered as definition of the Dirac matrices ~*,

©n=0,1,2,3.
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The equations

{7, =A" " =2, pr=0,1,2,3,
together with the Hermiticity properties fyOT =9, yiT = —
can be considered as definition of the Dirac matrices v*,
w=0,1,2,3.

The Dirac matrices can be chosen in the following way

o (1 0 i (0 o
T o 1) T e 0 )

where o, i = 1,2,3 are the Pauli matrices.
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The equations

{7, =A" " =2, pr=0,1,2,3,
together with the Hermiticity properties fyOT =9, yiT = —
can be considered as definition of the Dirac matrices v*,
w=0,1,2,3.

The Dirac matrices can be chosen in the following way

o (1 0 i (0 o
T o 1) T e 0 )

where o, i = 1,2,3 are the Pauli matrices.
This choice of matrices 4# is called the Dirac representation.
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The equations

{7, =A" " =2, pr=0,1,2,3,
together with the Hermiticity properties fyOT =9, yiT = —
can be considered as definition of the Dirac matrices v*,
w=0,1,2,3.

The Dirac matrices can be chosen in the following way

o (1 0 i (0 o
T o 1) T e 0 )

where o, i = 1,2,3 are the Pauli matrices.
This choice of matrices 4# is called the Dirac representation.

By |nspect|ng the form matrices v* we immediately see that
oT

i

=40 andy = —'
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Exercise. Show that v* matrices in the Dirac representation
satisfy the following anticommutation relationships

{4y =2g"1,  prv=0,1,2,3.
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Exercise. Show that v* matrices in the Dirac representation
satisfy the following anticommutation relationships

{7} =281, pv=0,1,2,3.

In this way, we have shown that the Dirac equation is algebraically
correct.
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

{3*,9"}
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

("5 =

Dirac Equation 31/44



Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(3,57} = 35" + 575"
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L

Indeed, let us calculate

(7,9} = A3 + 53" = Uy UUT U + Uy UUT# U =
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L

Indeed, let us calculate

(7,9} = A3 + 53" = Uy UUT U + Uy UUT# U =
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L

Indeed, let us calculate
{757} = 75" + 575" = Uy Uty U + UMy uUTytU =
= UT’y“”y”U + UT’y"’y“U
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L

Indeed, let us calculate

(7,9} = A3 + 53" = Uy UUT U + Uy UUT# U =
= Ulyty"U + Uy U = Ut (499" + 474" ) U
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7,9} = A3 + 53" = Uy UUT U + Uy UUT# U =
= Ulyty"U + Uy U = Ut (499" + 474" ) U
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7,9} = A3 + 53" = Uy UUT U + Uy UUT# U =
= Ulyty"U + Uy U = Ut (499" + 474" ) U
= Ul2g"IU =
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7,9} = A3 + 53" = Uy UUT U + Uy UUT# U =
= UMy U+ Uy U = Ut (9" +474*) U
= UM2g"IU = 2g" UTU
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(73"} = "7+ 373" = Uy UMY U + Ul Uy U =
= Uy U+ Ulyy"U = UT (49" + 4"4*) U
= UM2g"IU = 2g" UTU = 2g"1.
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7.3 = 35" +575" = U Ul U + Uy uuiy U =
= UMy U+ Uy U = UT (79" + 774" U
= UM2g"IU = 2g" UTU = 2g"1.

Moreover, calculate

~0f
50
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7.3 = 35" +575" = U Ul U + Uy uuiy U =
= UMy U+ Uy U = UT (79" + 774" U
= UM2g"IU = 2g" UTU = 2g"1.

Moreover, calculate

507 = (UT,YOU)T
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7.3 = 35" +575" = U Ul U + Uy uuiy U =
= UMy U+ Uy U = UT (79" + 774" U
= UM2g"IU = 2g" UTU = 2g"1.

Moreover, calculate

01 = (UHOU)T _ytaot gyt
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7.3 = 35" +575" = U Ul U + Uy uuiy U =
= UMy U+ Uy U = UT (79" + 774" U
= UM2g"IU = 2g" UTU = 2g"1.

Moreover, calculate

50t (UW’U)T = Uiyt utt = utyou
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Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

AH = FH = UTyPU, where UUT=UTU =L
Indeed, let us calculate

(7.3 = 35" +575" = U Ul U + Uy uuiy U =
= UMy U+ Uy U = UT (79" + 774" U
= UM2g"IU = 2g" UTU = 2g"1.

Moreover, calculate

~ t ~
,yoT _ (UHOU) _yt ,yoT UTT _ UTfyOU:fyO.
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Similarly
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Similarly

5t = (UW’U)T
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Similarly

it = (UT,yiU)T —ut~itutt
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Similarly

,~Yi’r _ (UT’yiU)T _ Ut ,yiT UTT _ —UT'yiU
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Similarly

~i T i\T it T i ~i
7= (UlyU) = Uty U = —UfY U = -5
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Similarly

~if i\T it T i ~i
7= (UlyU) = Uty U = —UfY U = -5

Thus we see that matrices 5* satisfy the same commutation
relations and Hermiticity properties as the original matrices ~*.
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Similarly
~i 't it it ot i i
A= (UH U) = U UT = —UTY U = -5,

Thus we see that matrices 5* satisfy the same commutation
relations and Hermiticity properties as the original matrices ~*.
Let us note that, if the new v*'s were defined by the similarity
transform

P At = ST,

then the new matrices would not satisfy desired Hermiticity
properties.
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The other commonly used representation of matrices y* is the
Weyl representation:

o (0 [ i 0 o
Y= IO’ Y= —0','0 )

where again o;, i = 1,2, 3, are the Pauli matrices.
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The other commonly used representation of matrices y* is the
Weyl representation:

o (0 [ i 0 o
Y= IO’ Y= —0','0 )

where again o;, i = 1,2, 3, are the Pauli matrices.
Exercise. Find the unitary matrix that transforms 4#'s in the Dirac
to the Weyl representation, iy, = U~ U.
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The other commonly used representation of matrices y* is the
Weyl representation:

o (0 [ i 0 o
Y= IO’ Y= —0','0 )

where again o;, i = 1,2, 3, are the Pauli matrices.

Exercise. Find the unitary matrix that transforms 4#'s in the Dirac
to the Weyl representation, iy, = U~ U.

Answer. E.g.

1 I 10
U_ﬁ<—l />, where I—<01>.
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Exercise. Show that

T =000,
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Exercise. Show that

T =000,
As v*'s are 4 x 4 matrices, the wave function of the Dirac equation
(i7"0u — m)1p(x) = 0

must have 4 components
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Exercise. Show that

T =000,
As v*'s are 4 x 4 matrices, the wave function of the Dirac equation
(i7"0u — m)1p(x) = 0

must have 4 components

|
7vb(x) = )
)
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We will show that each component ¥,(x), a = 1,2,3,4, of the
wave function v(x) satisfies the Klein-Gordon equation.
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We will show that each component ¥,(x), a = 1,2,3,4, of the
wave function v(x) satisfies the Klein-Gordon equation.

To this end let us write down explicitly the matrix indices in the
Dirac equation

(i’ya”bau — mdab) wb(X) = O7 a = ]_, 2, 3, 4.
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We will show that each component ¥,(x), a = 1,2,3,4, of the
wave function 1(x) satisfies the Klein-Gordon equation.

To this end let us write down explicitly the matrix indices in the
Dirac equation

(i’}/aﬂbau — mdab) wb(X) = O7 a = ]_7 2, 3, 4.

Let us act on both sides of this equation with the operator
(i7%,0, + méca), than we obtain
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We will show that each component ¥,(x), a = 1,2,3,4, of the
wave function 1(x) satisfies the Klein-Gordon equation.

To this end let us write down explicitly the matrix indices in the
Dirac equation

(i’}/aﬂbau — mdab) wb(X) = O7 a = ]_7 2, 3, 4.

Let us act on both sides of this equation with the operator
(i7%,0, + méca), than we obtain

(I’}/Zaay + m(sca) (ngau - m(sab) d)b(X) = 07 c= 13 27 3747
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We will show that each component ¥,(x), a = 1,2,3,4, of the
wave function 1(x) satisfies the Klein-Gordon equation.

To this end let us write down explicitly the matrix indices in the
Dirac equation

(i’}/aﬂbau — mdab) wb(X) = O7 a = ]_7 2, 3, 4.

Let us act on both sides of this equation with the operator
(i7%,0, + méca), than we obtain

(I’}/Zaay + m(sca) (ngau - m(sab) d)b(X) = 07 c= 13 27 3747
and, after performing the multiplication, we get

(—’Yga’ygbavau — imygp0y + "m’ngau - m25cb) "‘/’b(X) =0.
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — imy&y0, + /'”ngau - m265b) Yp(x) =0,
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m265b) Yp(x) =0,
hence, after dividing by (—1), we get

(V4745000 + m*dcs ) () = 0.
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m265b) Yp(x) =0,
hence, after dividing by (—1), we get

(V4745000 + m*dcs ) () = 0.

The first term in parentheses has the form

Ve VapOvOu =
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m265b) Yp(x) =0,
hence, after dividing by (—1), we get

(V4745000 + m*dcs ) () = 0.

The first term in parentheses has the form

VeaVapO0u = (V'7") ey OvOp
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m265b) Yp(x) =0,
hence, after dividing by (—1), we get
(7755000 + M55 ) o(x) = 0.
The first term in parentheses has the form

1 1
VDB = ()00 = (577" , 000t () , Oud

Ci
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Dirac Equation

The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — imy&y0, + /'"ngau - m25cb) Pp(x) =0

hence, after dividing by (—1), we get

(V4745000 + m*dcs ) () = 0.

The first term in parentheses has the form

v v 1 v
QTR No (V') ep w0 = <27 'V“)

0,0, + (17“7”> 0,0,
b 2 cb

Ci
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m25cb) Yp(x) =0,
hence, after dividing by (—1), we get
(7755000 + M55 ) o(x) = 0.

The first term in parentheses has the form

1 1
VDB = ()00 = (577" , 000t () , Oud

Ci

1
) (VY + ) b 0u0y
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m25cb) Yp(x) =0,
hence, after dividing by (—1), we get
(7755000 + M55 ) o(x) = 0.

The first term in parentheses has the form

1 1
VDB = ()00 = (577" , 000t () , Oud

Ci

1 1
= 3 (" 70 00, = 5 (28" Dy 010,
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m25cb) Yp(x) =0,
hence, after dividing by (—1), we get

(V4745000 + m*dcs ) () = 0.

The first term in parentheses has the form

v v 1 v
Yea Vo0 = (V') ep 000y = <27 'V“)

Ci

0,0, + (17“7”> 0,0,
b 2 cb

1 v v 1 14
=5 (VA +AY) p 00 = 5 (2" oy 00w
= g"0ep0,0, =
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — im0y + im0y — m25cb) Yp(x) =0,
hence, after dividing by (—1), we get

(V4745000 + m*dcs ) () = 0.

The first term in parentheses has the form

v v 1 v
Yea Vo0 = (V') ep 000y = <27 'V“)

Ci

0,0, + (17“7”> 0,0,
b 2 cb

1 1
= 5 (" ") 0u0y = 5 (26"1) ¢ IOy
= g"5ep0,0, = 600"
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The second and third term in parentheses cancel each other

(—’Ygﬂgbavau — imy&y0, + /'"ngau - m25cb) Yp(x) =0,

hence, after dividing by (—1), we get
(7755000 + M55 ) o(x) = 0.
The first term in parentheses has the form
VoM v, l 1 v, p 1 w v
YeaTapdOn = (V') OO = | 577" ) 0O+ (577")  9uly
cb cb

1 1
=5 (YA +AY) p OuO = 5 (2" oy 00w
= 8" 00,0y = 0ep0u 0" = S0,
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Inserting this result into the equation

(14720000 + mP0cp ) (x) = 0,
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Inserting this result into the equation

(7755000 + M5 ) 6(x) = 0,

we get
(8501 + m?6cs ) () = 0

and, after summing up over b, we get
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Inserting this result into the equation

('ygavgba,ﬁﬂ + mzécb) Pp(x) =0,
we get
(8501 + m?6cs ) () = 0
and, after summing up over b, we get

(D T m2) Ye(x) =0, c=1,2,34
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Inserting this result into the equation

(V400 0y + M5 ) () = 0,
we get
(5cbD + m25cb) Yp(x) =0
and, after summing up over b, we get
(D + m2) Ye(x) =0, c=1,234.

This means that solutions of the Dirac equation satisfy the
relationship

E2P_P=m® = E2=@+m
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hence their energy can be either positive or negative

E = +\/p% + m2.
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hence their energy can be either positive or negative

E = +\/p% + m2.

Existence of the negative energy solutions caused some anxiety in
the beginning, but then it occurred that they just represent
antiparticles of positive energy E = \/p? + m? which propagate
opposite to the time flow.
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Let us take the Hermitian conjugate of the Dirac equation

(i7" 8, — m)(x) = 0,
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Let us take the Hermitian conjugate of the Dirac equation

(i7" 8, — m)(x) = 0,

then we obtain
wh(x) (=i, —m) =0,

where an arrow above the derivative means that it acts to the left
and not to the right, as usual.
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Let us take the Hermitian conjugate of the Dirac equation

(i7u8;t - m) ¢(X) - 07
then we obtain
wh(x) (=i, —m) =0,

where an arrow above the derivative means that it acts to the left
and not to the right, as usual.

Let us use the relationship v* T = ~%9#~% and divide both sides of
this equation by (—1)

@/}T(x) (ifyofy“’yo(gu + m) =0.
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Let us take the Hermitian conjugate of the Dirac equation

(i7u8;t - m) ¢(X) - 07
then we obtain
wh(x) (=i, —m) =0,

where an arrow above the derivative means that it acts to the left
and not to the right, as usual.

Let us use the relationship v* T = ~%9#~% and divide both sides of
this equation by (—1)

@/}T(x) (ifyofy“’yo(gu + m) =0.
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Note that 702 =1, thus

¥h(x) (1°9%9°9 , + m4°) =,
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Note that 702 =1, thus

-
¥ (x) (i1°9%7°0 4 + mP4°) =0,
which we can rewrite in the following way

$1(x)7° (w% + m) ¥ =0
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Note that 702 =1, thus

¥i(x) (ivov“vogu +my°4°) =0,
which we can rewrite in the following way
1)1 ("8, +m) 4 =0.
let us multiply this equation by 7° from the right
Pi(x)y° (W“gu +m) =0

and define the Dirac conjugate wave function by
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Note that 702 =1, thus

1) (127920 + m°) = 0,
which we can rewrite in the following way
W (x)n° ("8, + m)A° =0,
let us multiply this equation by 7° from the right
$H(x)n° ("9 + m) =0
and define the Dirac conjugate wave function by

D(x) = 9T,

Dirac Equation 40/44



then the conjugate Dirac equation takes the form

P(x) (i’y“(g# + m) =0.
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then the conjugate Dirac equation takes the form

() (i’y“g# + m) =0.

To avoid the assumption that the derivative acts to the left we
could write the equation in the following form

0, B(x)" + mib(x) = 0.
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then the conjugate Dirac equation takes the form

() (i’y“g# + m) =0.

To avoid the assumption that the derivative acts to the left we
could write the equation in the following form

0, B(x)7" + mib(x) = 0.
Multiplying it with ¢(x) from the right we obtain the equation

10,0 (x )y (x) + mib(x)ip(x) = 0,
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then the conjugate Dirac equation takes the form

(x) (i’y“(g# + m) =0.

To avoid the assumption that the derivative acts to the left we
could write the equation in the following form

0, B(x)7" + mib(x) = 0.
Multiplying it with ¢(x) from the right we obtain the equation

10,0 (x )y (x) + mib(x)ip(x) = 0,

where the derivative acts only on 9)(x).
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Multiplying the Dirac equation from the left by 1/_1(x) we get

Y(x) (iv"0, — m)¥(x) = 0.
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Multiplying the Dirac equation from the left by 1/_1(x) we get

(x) (i) — m) ¢p(x) = 0.
Now let us add both sides of this equation to the equation

10 ()79 (x) + mib(x)¥(x) = 0,

Dirac Equation 42/44



Multiplying the Dirac equation from the left by 1/_1(x) we get

P(x) (iv"0, — m)(x) = 0.
Now let us add both sides of this equation to the equation
i9,(x)7"1b(x) + m(x)ih(x) = 0,
then we get

()Y Burb(x) — mp(x)ih(x) + i0u1p(x)7"1b(x) + mib(x)ih(x) = 0.
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Multiplying the Dirac equation from the left by 1/_1(x) we get

P (x) (iIv" 0y — m) P(x) = 0.
Now let us add both sides of this equation to the equation
10 ()79 (x) + mib(x)¥(x) = 0,
then we get
i (x)7 0,3 (x) — mb(x)h(x) + 10,30 (x)V*(x) + mb(x)b(x) = 0.
The terms containing mass cancel and we end up with the equation

()Y Dy (x) + 10, B (x)y"p(x) = .
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If we divide both sides of it by i we get

() 0utb(x) + Db (x)7"(x) = 0.
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If we divide both sides of it by i we get

D)V Ot (x) + 0uth(x)y*1(x) = 0.

Now, if we use the product rule, we get

D (DO 0(x)) = D" (x) = 0,
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If we divide both sides of it by i we get

D)V Ot (x) + 0uth(x)y*1(x) = 0.

Now, if we use the product rule, we get

D (DO 0(x)) = D" (x) = 0,
where we have defined the Dirac current

J(x) = BEe(x) = (p(x),5(x))
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If we divide both sides of it by i we get
PO Butb(x) + 0utp(x)7"1b(x) = 0.
Now, if we use the product rule, we get
Oy (PO (X)) = 9uft'(x) = 0,
where we have defined the Dirac current
J(x) = BEe(x) = (p(x),5(x))

which obviously satisfies the continuity equation.
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Let us calculate the zeroth component of the Dirac current

P o= vy
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Let us calculate the zeroth component of the Dirac current

P = 9% =91y %
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Let us calculate the zeroth component of the Dirac current

P = 9% =910 % = yly
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Dirac Current

Let us calculate the zeroth component of the Dirac current

P = 9% =910 % = yly
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Dirac Current

Let us calculate the zeroth component of the Dirac current
= 9% =91 =Ty
1
_ Kok sk )k ()
- (¢17¢27¢3ﬂ/’4) ¢3
V4
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Let us calculate the zeroth component of the Dirac current

P = 9% =910 = yly
Y1
= (W) jj — iy e + PSs + Yl
s
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Let us calculate the zeroth component of the Dirac current

P = 9% =910 = yly
Y1
= (W) jj — iy e + PSs + Yl
s
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Let us calculate the zeroth component of the Dirac current

P = 9% =910 = yly
Y1
= (W) jj — iy e + PSs + Yl
s

= [¢1* + [W2f® + |¥3]* + |va]?
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Let us calculate the zeroth component of the Dirac current

P = 9% =910 = yly
Y1
= (W) jj — iy e + PSs + Yl
s

= [v1* + [02f® + |¥3]> + |va]* = p > 0.
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Let us calculate the zeroth component of the Dirac current

P = 9% =910 = yly
Y1
= (W) jj — iy e + PSs + Yl
s

= [v1* + [02f® + |¥3]> + |va]* = p > 0.
Thus, we see that the zeroth component of the Dirac current can

be interpreted as the probability density p of finding a particle in
the spatial volume element d3x at time ¢.
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