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Schrödinger Equation

The Schrödinger equation

i~
∂ψ(~r , t)

∂t
= − ~2

2m
~∇2ψ(~r , t) + V (~r , t)ψ(~r , t)

can be obtained by substituting

E → i~
∂

∂t
, ~p → −i~~∇

in a non relativistic formula for the total mechanical energy of a
particle

E =
~p2

2m
+ V (~r , t).

The Schrödinger equation describes motion of a non relativistic
spinless particle of mass m in a field of the force
~F (~r , t) = −~∇V (~r , t).
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Schrödinger Equation

The kinetic energy of a free particle is given by a non relativistic
formula

E =
~p2

2m

and the Schrödinger equation in this case takes the form

i~
∂ψ

∂t
= − ~2

2m
~∇2ψ.

The squared module of the wave function |ψ(~r , t)|2 is interpreted
as probability density of finding the particle in the spatial volume
element d3r = dxdydz around the point ~r at the time t.
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Probability Current

We can define the probability current for a spinless non relativistic
particle as the vector

~S(~r , t) = − i~
2m

[
ψ∗~∇ψ −

(
~∇ψ∗

)
ψ
]

which, together with the probability density |ψ(~r , t)|2, satisfies the
following continuity equation

∂

∂t
|ψ(~r , t)|2 + ~∇ · ~S(~r , t) = 0.
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Relativistic Wave Equation

It seems that the simplest way to obtain a relativistic wave
equation would be the following substitution

E → i~
∂

∂t
, ~p → −i~~∇

to the relativistic relationship between momentum and energy of a
particle of mass m

E 2 − ~p2c2 = m2c4,

where c is the speed of light in vacuum.
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Relativistic Wave Equation

Let us remind that the relationship E 2 − ~p2c2 = m2c4 is Lorentz
invariant, as it can be derived by calculating the inner (dot)
product of the energy-momentum four vector

pµ =

(
E

c
, ~p

)
with itself.
The dot product of any two four vectors in Minkowski’s space time
is by definition invariant with respect to Lorentz transformations.

Let us calculate

p2 = p · p = pµp
µ = p0

2 − ~p 2 =
E 2

c2
− ~p2.
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Relativistic Wave Equation

Let us remind that

E = γmc2, ~p = γm~v ,

where the Lorentz factor γ is given by

γ =
1√

1− ~v2

c2

.

Hence

p2 =
E 2

c2
− ~p2 =

γ2
(
m2c2 −m2~v2

)
= m2c2γ2

(
1−

~v2

c2

)
= m2c2.
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Relativistic Wave Equation

We got the equation

E 2

c2
− ~p2 = m2c2,

which after multiplying its both sides by c2 gives our starting
relationship E 2 − ~p2c2 = m2c4.
Substituting

E → i~
∂

∂t
, ~p → −i~~∇

in it we get the relativistic wave equation[
−~2 ∂2

∂(ct)2
+ ~2~∇2

]
ϕ(t, ~x) = m2c2ϕ(t, ~x).
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Relativistic Wave Equation

Dividing both sides of the equation[
−~2 ∂2

∂(ct)2
+ ~2~∇2

]
ϕ(t, ~x) = m2c2ϕ(t, ~x)

by −~2 after having shifted m2c2ϕ(t, ~x) to the l.h.s. we get the
equation [

∂2

∂(ct)2
− ~∇2 +

m2c2

~2

]
ϕ(t, ~x) = 0.

Let us define the time-space four vector
x ≡ xµ = (x0, ~x) = (ct, ~x), then

∂2

∂(ct)2
− ~∇2 =

∂2

∂ x0 2
− ∂2

∂ x1 2
− ∂2

∂ x2 2
− ∂2

∂ x3 2
≡ �,
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Relativistic Wave Equation

where we have introduced symbol � to denote the d’Alembert
operator.
Moreover, let us denote µ2 ≡ m2c2

~2 , then the equation[
∂2

∂(ct)2
− ~∇2 +

m2c2

~2

]
ϕ(t, ~x) = 0

takes the simple form

(
� + µ2

)
ϕ(x) = 0.

This is the Klein-Gordon wave equation.
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Klein-Gordon Wave Equation

Despite being realistically invariant, the Klein-Gordon equation has
some shortcomings which make it practically useless for the sake of
quantum mechanical description of a relativistic particle, as e.g.
electron.
We will discuss those shortcomings in the following.

If the wave function in the Klein-Gordon equation is complex, then
we can define the probability current

jµ(x) ≡ i [ϕ∗(x)∂µϕ(x)− ∂µ (ϕ∗(x))ϕ(x)] ≡ (ρ(x), ~j(x)),

where we have introduced a shorthand notation for the differential
operator

∂µ ≡
∂

∂xµ
, ∂µ ≡ ∂

∂xµ
.
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Klein-Gordon Wave Equation

Exercise. Show that ∂µ is a covariant and ∂µ is a contravariant
four vector.
The current jµ(x) satisfies the following continuity equation

∂µj
µ(x) = 0.

In order to prove this statement let us first write down the
Klein-Gordon equation for the complex conjugate wave function
ϕ∗(x).
To this end let us conjugate the Klein-Gordon equation(

� + µ2
)
ϕ∗(x) = 0.

Where we have used the fact that both the d’Alembert operator �
and the parameter µ2 are real.
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Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current jµ(x)

∂µj
µ(x) = i∂µ [ϕ∗(x)∂µϕ(x)− ∂µ (ϕ∗(x))ϕ(x)]

= i [∂µϕ
∗(x)∂µϕ(x) + ϕ∗(x)∂µ∂

µϕ(x)

−∂µ∂µ (ϕ∗(x))ϕ(x)− ∂µϕ∗(x)∂µϕ(x)]

= i [ϕ∗(x)�ϕ(x)−� (ϕ∗(x))ϕ(x)]

= i
[
ϕ∗(x)(−µ2)ϕ(x) + µ2ϕ∗(x)ϕ(x)

]
= 0,

where we have used the Klein-Gordon equation and its complex
conjugate(

� + µ2
)
ϕ(x) = 0 ⇒ �ϕ(x) = −µ2ϕ(x),(

� + µ2
)
ϕ∗(x) = 0 ⇒ �ϕ∗(x) = −µ2ϕ∗(x).
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Klein-Gordon Wave Equation

We would like to interpret the zeroth component j0(x) of the
current jµ(x) as the probability density ρ(x) of finding a particle in
the spatial volume element d3x at time t.
Unfortunately,

ρ(x) = i
[
ϕ∗(x)∂0ϕ(x)− ∂0 (ϕ∗(x))ϕ(x)

]
is not a positively defined quantity, which in practice excludes the
probabilistic interpretation of the wave function ϕ(x).

Moreover, if the wave function ϕ(x) of the Klein-Gordon equation
is real, then the current jµ(x) is identically equal to 0.
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Klein-Gordon Wave Equation

If, in spite of that, we assumed that |ϕ(x)|2 is the probability
density of finding a particle in the spatial volume element d3x at
time t, then the probability normalization integral∫

|ϕ(t, ~x)|2 d3x = 1

would not be time conserved.
Another problem is related to the fact that there is the second
derivative with respect to time in the Klein-Gordon equation, while
we would like the relativistic wave equation to have the form
analogous to the Schrödinger equation, i.e.

i~
∂ψ(x)

∂t
= Hψ(x).
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Klein-Gordon Wave Equation

If we take the square root of the relationship E 2 − ~p2c2 = m2c4,
then we obtain the relativistic formula for the particle energy

E = ±
√
~p2c2 + m2c4.

We want the particle energy to be positive, thus we choose

E =
√
~p2c2 + m2c4.

If we now substitute

E → i~
∂

∂t
, ~p → −i~~∇

into this formula, we would end up with the integral operator on
the r.h.s. of the corresponding wave equation.

Karol Kołodziej Dirac Equation 16/44



Klein-Gordon Wave Equation

If we take the square root of the relationship E 2 − ~p2c2 = m2c4,
then we obtain the relativistic formula for the particle energy

E = ±
√
~p2c2 + m2c4.

We want the particle energy to be positive, thus we choose

E =
√
~p2c2 + m2c4.

If we now substitute

E → i~
∂

∂t
, ~p → −i~~∇

into this formula, we would end up with the integral operator on
the r.h.s. of the corresponding wave equation.

Karol Kołodziej Dirac Equation 16/44



Klein-Gordon Wave Equation

If we take the square root of the relationship E 2 − ~p2c2 = m2c4,
then we obtain the relativistic formula for the particle energy

E = ±
√
~p2c2 + m2c4.

We want the particle energy to be positive, thus we choose

E =
√
~p2c2 + m2c4.

If we now substitute

E → i~
∂

∂t
, ~p → −i~~∇

into this formula, we would end up with the integral operator on
the r.h.s. of the corresponding wave equation.

Karol Kołodziej Dirac Equation 16/44



Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

ψ(t, ~x) =
1

(2π)
3
2

∫
d3ke i

~k·~x ψ̃(t, ~k).

Then

−i~~∇ψ(t, ~x) =

1

(2π)
3
2

∫
d3k(−i~~∇)e i

~k·~x ψ̃(t, ~k)

=
1

(2π)
3
2

∫
d3k ~~k e i

~k·~x ψ̃(t, ~k).

Exercise. Show that

~∇e i~k·~x = i~k e i
~k·~x .
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Klein-Gordon Wave Equation

Now let us calculate√
−~2c2~∇2 + m2c4ψ(t, ~x) =

1

(2π)
3
2

∫
d3k

√
~2c2~k2 + m2c4e i

~k·~x ψ̃(t, ~k).

In order to have the wave function ψ(t, ~x) on the r.h.s. we have to
perform an inverse Fourier transformation√
−~2c2~∇2 + m2c4ψ(t, ~x) =

1
(2π)3

∫
d3x ′

∫
d3k√

~2c2~k2 + m2c4e i
~k·(~x−~x ′)ψ(t, ~x ′).

We see that the operator on l.h.s. is an integral operator. It is not
a linear operator either.
To circumvent those problems we will proceed in a different way.
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It is not
a linear operator either.
To circumvent those problems we will proceed in a different way.
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Dirac Equation

Let us assume that the Hamiltonian in the relativistic wave
equation

i~
∂ψ(x)

∂t
= Hψ(x)

can be expressed in the following form

H = ~α · ~p + βm

such that

H2 = ~p2 + m2.

We use hear natural units, where

~ = 1 and c = 1.
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Dirac Equation

Let us calculate square of the Hamilton operator

H2 = (αipi + βm)(αjpj + βm)

=

αiαjpipj + αipiβm + βmαjpj + β2m2

=
1
2
αiαjpipj +

1
2
αjαipjpi + αiβmpi + βαimpi + β2m2

=
1
2

(αiαj + αjαi )pipj + (αiβ + βαi )mpi + β2m2,

where we have symmetrized the coefficient of the pipj term in
order to avoid possible cancellations between coefficients in front
of pipj and pjpi .
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Dirac Equation

On the other hand, we want that

H2 = pipi + m2 = δijpipj + m2,

where the coefficient of pipj is already symmetric.
Let us compare both formula for H2.

1
2

(αiαj + αjαi )pipj + (αiβ + βαi )mpi + β2m2 = δijpipj + m2.

Thus we see that the following relationships must hold

αiαj + αjαi = 2δijI, αiβ + βαi = 0, β2 = I.

It is obvious that αi , i = 1, 2, 3, and β must be matrices, and
hence I must be a unit matrix.
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Dirac Equation

In order the Hamiltonian H = αipi + βm to be Hermitian, the
matrices αi and β must be Hermitian themselves, i.e.

α†i = αi , i = 1, 2, 3, β† = β,

thus they are squared matrices.

What is their dimension?
Assume i 6= j , then

αiαj + αjαi = 2δijI = 0 ⇒ αiαj = −αjαi .

Calculate the determinant of both sides

det(αiαj) = det(−αjαi ) = (−1)ddet(αiαj),

where d × d is the dimension of matrix αi .
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Dirac Equation

Thus we see that d must be an even number for matrix αi .
The same holds obviously for matrix β.

The smallest nontrivial choice would be d = 2.
There are Hermitian 2× 2 matrices which satisfy analogous
relationships as those for αi and β

αiαj + αjαi = 2δijI, αiβ + βαi = 0, β2 = I.

They are commonly known as the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

for which it holds σiσj + σjσi = 2δij , i , j = 1, 2, 3.
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Dirac Equation

However, the fourth matrix is missing for d = 2.
Thus, let us choose d = 4.

Before we find an explicit form of the matrices αi and β satisfying
the desired relationships we define new matrices γµ, µ = 0, 1, 2, 3,

γ0 ≡ β, γ i ≡ βαi , i = 1, 2, 3.

Let us assume ~ = c = 1 and multiply the equation

i
∂ψ(x)

∂t
= (αipi + βm)ψ(x)

by β from the left and substitute pi = −i∂i , then we get

iβ
∂ψ(x)

∂t
=
(
βαi (−i∂i ) + β2m

)
ψ(x).
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Dirac Equation

iβ
∂ψ(x)

∂t
=
(
βαi (−i∂i ) + β2m

)
ψ(x).

Let us use the condition β2 = I, insert definitions of matrices γµ:
γ0 ≡ β, γ i ≡ βαi , i = 1, 2, 3, and shift everything to the l.h.s. of
the equation

(
iγ0∂0 + iγi∂i −m

)
ψ(x) = 0.

Combining the first and the second term in the parentheses we
obtain the Dirac equation in the following form

(iγµ∂µ −m)ψ(x) = 0.

Karol Kołodziej Dirac Equation 25/44



Dirac Equation

iβ
∂ψ(x)

∂t
=
(
βαi (−i∂i ) + β2m

)
ψ(x).

Let us use the condition β2 = I, insert definitions of matrices γµ:
γ0 ≡ β, γ i ≡ βαi , i = 1, 2, 3, and shift everything to the l.h.s. of
the equation (

iγ0∂0 + iγ i∂i −m
)
ψ(x) = 0.

Combining the first and the second term in the parentheses we
obtain the Dirac equation in the following form

(iγµ∂µ −m)ψ(x) = 0.

Karol Kołodziej Dirac Equation 25/44



Dirac Equation

iβ
∂ψ(x)

∂t
=
(
βαi (−i∂i ) + β2m

)
ψ(x).

Let us use the condition β2 = I, insert definitions of matrices γµ:
γ0 ≡ β, γ i ≡ βαi , i = 1, 2, 3, and shift everything to the l.h.s. of
the equation (

iγ0∂0 + iγ i∂i −m
)
ψ(x) = 0.

Combining the first and the second term in the parentheses we
obtain the Dirac equation in the following form

(iγµ∂µ −m)ψ(x) = 0.

Karol Kołodziej Dirac Equation 25/44



Dirac Equation

iβ
∂ψ(x)

∂t
=
(
βαi (−i∂i ) + β2m

)
ψ(x).

Let us use the condition β2 = I, insert definitions of matrices γµ:
γ0 ≡ β, γ i ≡ βαi , i = 1, 2, 3, and shift everything to the l.h.s. of
the equation (

iγ0∂0 + iγ i∂i −m
)
ψ(x) = 0.

Combining the first and the second term in the parentheses we
obtain the Dirac equation in the following form

(iγµ∂µ −m)ψ(x) = 0.

Karol Kołodziej Dirac Equation 25/44



Dirac Equation

Let us define symbol ∂/ = γµ∂µ. With it, the Dirac equation takes
a simple form

(i∂/−m)ψ(x) = 0.

We still have to find matrices γµ which satisfy the desired
properties.
Let us verify properties of γµ’s under Hermitian conjugation.

γ0
†

= β† = β = γ0, γi
†

= (βαi )
† = α†i β

† = αiβ = −βαi = −γi ,

where we have used the following properties

(AB)† = B†A† and αiβ + βαi = 0, i = 1, 2, 3.
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Dirac Equation

And now check the commutation properties of γµ’s: γ0 ≡ β,
γ i ≡ βαi , i = 1, 2, 3. Remember that

αiαj + αjαi = 2δijI, αiβ + βαi = 0, β2 = I.

Let us calculate

γ0γ i = ββαi = β(−αiβ) = −βαiβ = −γ iγ0

⇒ γ0γ i + γiγ0 = 0.

γ iγj = βαiβαj = βαi (−αjβ) = −βαiαjβ = −β(−αjαi + 2δij)β

= βαjαiβ − 2δijβ
2 = −βαjβαi − 2δijI = −γjγ i − 2δijI

⇒ γ iγj + γjγ i = −2δijI.
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Dirac Equation

Let us summarize our results

γ0γ i + γ iγ0 = 0,

γ iγj + γjγ i = −2δijI

and recall the form of the metric tensor

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .
We see that

γµγν + γνγµ = 2gµνI,

where I is the unit 4× 4 matrix.
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Dirac Equation

The equations

{γµ, γν} = γµγν + γνγµ = 2gµνI, µ, ν = 0, 1, 2, 3,

together with the Hermiticity properties γ0 † = γ0, γ i
†

= −γ i
can be considered as definition of the Dirac matrices γµ,
µ = 0, 1, 2, 3.
The Dirac matrices can be chosen in the following way

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
,

where σi , i = 1, 2, 3 are the Pauli matrices.

This choice of matrices γµ is called the Dirac representation.
By inspecting the form matrices γµ we immediately see that
γ0
†

= γ0 and γ i
†

= −γi .

Karol Kołodziej Dirac Equation 29/44



Dirac Equation

The equations

{γµ, γν} = γµγν + γνγµ = 2gµνI, µ, ν = 0, 1, 2, 3,

together with the Hermiticity properties γ0 † = γ0, γ i
†

= −γ i
can be considered as definition of the Dirac matrices γµ,
µ = 0, 1, 2, 3.
The Dirac matrices can be chosen in the following way

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
,

where σi , i = 1, 2, 3 are the Pauli matrices.
This choice of matrices γµ is called the Dirac representation.

By inspecting the form matrices γµ we immediately see that
γ0
†

= γ0 and γ i
†

= −γi .

Karol Kołodziej Dirac Equation 29/44



Dirac Equation

The equations

{γµ, γν} = γµγν + γνγµ = 2gµνI, µ, ν = 0, 1, 2, 3,

together with the Hermiticity properties γ0 † = γ0, γ i
†

= −γ i
can be considered as definition of the Dirac matrices γµ,
µ = 0, 1, 2, 3.
The Dirac matrices can be chosen in the following way

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
,

where σi , i = 1, 2, 3 are the Pauli matrices.
This choice of matrices γµ is called the Dirac representation.
By inspecting the form matrices γµ we immediately see that
γ0
†

= γ0 and γ i
†

= −γ i .

Karol Kołodziej Dirac Equation 29/44



Dirac Equation

The equations

{γµ, γν} = γµγν + γνγµ = 2gµνI, µ, ν = 0, 1, 2, 3,

together with the Hermiticity properties γ0 † = γ0, γ i
†

= −γ i
can be considered as definition of the Dirac matrices γµ,
µ = 0, 1, 2, 3.
The Dirac matrices can be chosen in the following way

γ0 =

(
I 0
0 −I

)
, γi =

(
0 σi
−σi 0

)
,

where σi , i = 1, 2, 3 are the Pauli matrices.
This choice of matrices γµ is called the Dirac representation.
By inspecting the form matrices γµ we immediately see that
γ0
†

= γ0 and γ i
†

= −γ i .

Karol Kołodziej Dirac Equation 29/44



Dirac Equation

Exercise. Show that γµ matrices in the Dirac representation
satisfy the following anticommutation relationships

{γµ, γν} = 2gµνI, µ, ν = 0, 1, 2, 3.

In this way, we have shown that the Dirac equation is algebraically
correct.
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Dirac Matrices

Having found one representation of the Dirac matrices we can
obtain any other representation by means of a unitary
transformation.

γµ → γ̃µ = U†γµU, where UU† = U†U = I.

Indeed, let us calculate

{γ̃µ, γ̃ν}

= γ̃µγ̃ν + γ̃ν γ̃µ = U†γµUU†γνU + U†γνUU†γµU =

= U†γµγνU + U†γνγµU = U† (γµγν + γνγµ)U

= U†2gµνIU = 2gµνU†U = 2gµνI.

Moreover, calculate

γ̃0
†

=
(
U†γ0U

)†
= U† γ0

†
U†
†

= U†γ0U = γ̃0.
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Dirac Matrices

Similarly

γ̃ i
†

=
(
U†γ iU

)†

= U† γ i
†
U†
†

= −U†γ iU = −γ̃ i .

Thus we see that matrices γ̃µ satisfy the same commutation
relations and Hermiticity properties as the original matrices γµ.
Let us note that, if the new γµ’s were defined by the similarity
transform

γµ → γ̃µ = S−1γµS ,

then the new matrices would not satisfy desired Hermiticity
properties.
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Dirac Matrices

The other commonly used representation of matrices γµ is the
Weyl representation:

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi
−σi 0

)
,

where again σi , i = 1, 2, 3, are the Pauli matrices.
Exercise. Find the unitary matrix that transforms γµ’s in the Dirac
to the Weyl representation, γµW = U†γµDU.

Answer. E.g.

U =
1√
2

(
I I
−I I

)
, where I =

(
1 0
0 1

)
.
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Dirac Matrices and Dirac Equation

Exercise. Show that

γµ † = γ0γµγ0.

As γµ’s are 4× 4 matrices, the wave function of the Dirac equation

(iγµ∂µ −m)ψ(x) = 0

must have 4 components

ψ(x) =


ψ1(x)
ψ2(x)
ψ3(x)
ψ4(x)

 .
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Dirac Equation

We will show that each component ψa(x), a = 1, 2, 3, 4, of the
wave function ψ(x) satisfies the Klein-Gordon equation.
To this end let us write down explicitly the matrix indices in the
Dirac equation(

iγµab∂µ −mδab
)
ψb(x) = 0, a = 1, 2, 3, 4.

Let us act on both sides of this equation with the operator
(iγνca∂ν + mδca), than we obtain

(iγνca∂ν + mδca)
(
iγµab∂µ −mδab

)
ψb(x) = 0, c = 1, 2, 3, 4,

and, after performing the multiplication, we get(
−γνcaγ

µ
ab∂ν∂µ − imγνcb∂ν + imγµcb∂µ −m2δcb

)
ψb(x) = 0.
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γνcaγ
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ψb(x) = 0.

The first term in parentheses has the form

γνcaγ
µ
ab∂ν∂µ = (γνγµ)cb ∂ν∂µ =

(
1
2
γνγµ

)
cb
∂ν∂µ +

(
1
2
γµγν

)
cb
∂µ∂ν

=
1
2

(γνγµ + γµγν)cb ∂µ∂ν =
1
2

(2gµνI)cb ∂µ∂ν
= gµνδcb∂µ∂ν = δcb∂µ∂

µ = δcb�.
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Dirac Equation

Inserting this result into the equation(
γνcaγ

µ
ab∂ν∂µ + m2δcb

)
ψb(x) = 0,

we get (
δcb� + m2δcb

)
ψb(x) = 0

and, after summing up over b, we get

(
� + m2

)
ψc(x) = 0, c = 1, 2, 3, 4.

This means that solutions of the Dirac equation satisfy the
relationship

E 2 − ~p2 = m2 ⇒ E 2 = ~p2 + m2,
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Dirac Equation

hence their energy can be either positive or negative

E = ±
√
~p2 + m2.

Existence of the negative energy solutions caused some anxiety in
the beginning, but then it occurred that they just represent
antiparticles of positive energy E =

√
~p2 + m2 which propagate

opposite to the time flow.
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Conjugate Dirac Equation

Let us take the Hermitian conjugate of the Dirac equation

(iγµ∂µ −m)ψ(x) = 0,

then we obtain

ψ†(x)
(
−i γµ †

←−
∂ µ −m

)
= 0,

where an arrow above the derivative means that it acts to the left
and not to the right, as usual.

Let us use the relationship γµ † = γ0γµγ0 and divide both sides of
this equation by (−1)

ψ†(x)
(
iγ0γµγ0

←−
∂ µ + m

)
= 0.
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Conjugate Dirac Equation

Note that γ0 2 = I, thus

ψ†(x)
(
iγ0γµγ0

←−
∂ µ + mγ0γ0

)
= 0,

which we can rewrite in the following way

ψ†(x)γ0
(
iγµ
←−
∂ µ + m

)
γ0 = 0.

let us multiply this equation by γ0 from the right

ψ†(x)γ0
(
iγµ
←−
∂ µ + m

)
= 0

and define the Dirac conjugate wave function by

ψ̄(x) ≡ ψ†(x)γ0,
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Conjugate Dirac Equation

then the conjugate Dirac equation takes the form

ψ̄(x)
(
iγµ
←−
∂ µ + m

)
= 0.

To avoid the assumption that the derivative acts to the left we
could write the equation in the following form

i∂µψ̄(x)γµ + mψ̄(x) = 0.

Multiplying it with ψ(x) from the right we obtain the equation

i∂µψ̄(x)γµψ(x) + mψ̄(x)ψ(x) = 0,

where the derivative acts only on ψ̄(x).
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Dirac Current

Multiplying the Dirac equation from the left by ψ̄(x) we get

ψ̄(x) (iγµ∂µ −m)ψ(x) = 0.

Now let us add both sides of this equation to the equation

i∂µψ̄(x)γµψ(x) + mψ̄(x)ψ(x) = 0,

then we get

iψ̄(x)γµ∂µψ(x)−mψ̄(x)ψ(x) + i∂µψ̄(x)γµψ(x) + mψ̄(x)ψ(x) = 0.

The terms containing mass cancel and we end up with the equation

iψ̄(x)γµ∂µψ(x) + i∂µψ̄(x)γµψ(x) = 0.
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Dirac Current

If we divide both sides of it by i we get

ψ̄(x)γµ∂µψ(x) + ∂µψ̄(x)γµψ(x) = 0.

Now, if we use the product rule, we get

∂µ
(
ψ̄(x)γµψ(x)

)
= ∂µj

µ(x) = 0,

where we have defined the Dirac current

jµ(x) ≡ ψ̄(x)γµψ(x) ≡
(
ρ(x), ~j(x)

)
,

which obviously satisfies the continuity equation.
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Dirac Current

Let us calculate the zeroth component of the Dirac current

j0 = ψ̄γ0ψ = ψ†γ0γ0ψ

= ψ†ψ

= (ψ∗1, ψ
∗
2, ψ

∗
3, ψ

∗
4)


ψ1
ψ2
ψ3
ψ4

 = ψ∗1ψ1 + ψ∗2ψ2 + ψ∗3ψ3 + ψ∗4ψ4

= |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2 = ρ ­ 0.

Thus, we see that the zeroth component of the Dirac current can
be interpreted as the probability density ρ of finding a particle in
the spatial volume element d3x at time t.
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