Dirac Equation

Karol Kołodziej

Institute of Physics
University of Silesia, Katowice http://kk.us.edu.pl

Schrödinger Equation

The Schrödinger equation

$$
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi(\vec{r}, t)+V(\vec{r}, t) \psi(\vec{r}, t)
$$

can be obtained by substituting

Schrödinger Equation

The Schrödinger equation

$$
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi(\vec{r}, t)+V(\vec{r}, t) \psi(\vec{r}, t)
$$

can be obtained by substituting

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

in a non relativistic formula for the total mechanical energy of a particle

$$
E=\frac{\vec{p}^{2}}{2 m}+V(\vec{r}, t)
$$

Schrödinger Equation

The Schrödinger equation

$$
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi(\vec{r}, t)+V(\vec{r}, t) \psi(\vec{r}, t)
$$

can be obtained by substituting

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

in a non relativistic formula for the total mechanical energy of a particle

$$
E=\frac{\vec{p}^{2}}{2 m}+V(\vec{r}, t)
$$

The Schrödinger equation describes motion of a non relativistic spinless particle of mass m in a field of the force $\vec{F}(\vec{r}, t)=-\vec{\nabla} V(\vec{r}, t)$.

Schrödinger Equation

The Schrödinger equation

$$
i \hbar \frac{\partial \psi(\vec{r}, t)}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi(\vec{r}, t)+V(\vec{r}, t) \psi(\vec{r}, t)
$$

can be obtained by substituting

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

in a non relativistic formula for the total mechanical energy of a particle

$$
E=\frac{\vec{p}^{2}}{2 m}+V(\vec{r}, t)
$$

The Schrödinger equation describes motion of a non relativistic spinless particle of mass m in a field of the force $\vec{F}(\vec{r}, t)=-\vec{\nabla} V(\vec{r}, t)$.

Schrödinger Equation

The kinetic energy of a free particle is given by a non relativistic formula

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

and the Schrödinger equation in this case takes the form

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi
$$

Schrödinger Equation

The kinetic energy of a free particle is given by a non relativistic formula

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

and the Schrödinger equation in this case takes the form

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi
$$

The squared module of the wave function $|\psi(\vec{r}, t)|^{2}$ is interpreted as probability density of finding the particle in the spatial volume element $\mathrm{d}^{3} r=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ around the point \vec{r} at the time t.

Schrödinger Equation

The kinetic energy of a free particle is given by a non relativistic formula

$$
E=\frac{\vec{p}^{2}}{2 m}
$$

and the Schrödinger equation in this case takes the form

$$
i \hbar \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \vec{\nabla}^{2} \psi
$$

The squared module of the wave function $|\psi(\vec{r}, t)|^{2}$ is interpreted as probability density of finding the particle in the spatial volume element $\mathrm{d}^{3} r=\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ around the point \vec{r} at the time t.

Probability Current

We can define the probability current for a spinless non relativistic particle as the vector

$$
\vec{S}(\vec{r}, t)=-\frac{i \hbar}{2 m}\left[\psi^{*} \vec{\nabla} \psi-\left(\vec{\nabla} \psi^{*}\right) \psi\right]
$$

which, together with the probability density $|\psi(\vec{r}, t)|^{2}$, satisfies the following continuity equation

$$
\frac{\partial}{\partial t}|\psi(\vec{r}, t)|^{2}+\vec{\nabla} \cdot \vec{S}(\vec{r}, t)=0
$$

Probability Current

We can define the probability current for a spinless non relativistic particle as the vector

$$
\vec{S}(\vec{r}, t)=-\frac{i \hbar}{2 m}\left[\psi^{*} \vec{\nabla} \psi-\left(\vec{\nabla} \psi^{*}\right) \psi\right]
$$

which, together with the probability density $|\psi(\vec{r}, t)|^{2}$, satisfies the following continuity equation

$$
\frac{\partial}{\partial t}|\psi(\vec{r}, t)|^{2}+\vec{\nabla} \cdot \vec{S}(\vec{r}, t)=0
$$

Relativistic Wave Equation

It seems that the simplest way to obtain a relativistic wave equation would be the following substitution

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

to the relativistic relationship between momentum and energy of a particle of mass m

$$
E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4},
$$

where c is the speed of light in vacuum.

Relativistic Wave Equation

It seems that the simplest way to obtain a relativistic wave equation would be the following substitution

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

to the relativistic relationship between momentum and energy of a particle of mass m

$$
E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}
$$

where c is the speed of light in vacuum.

Relativistic Wave Equation

Let us remind that the relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$ is Lorentz invariant, as it can be derived by calculating the inner (dot) product of the energy-momentum four vector

$$
p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

with itself.
The dot product of any two four vectors in Minkowski's space time is by definition invariant with respect to Lorentz transformations.

Relativistic Wave Equation

Let us remind that the relationship $E^{2}-\bar{p}^{2} c^{2}=m^{2} c^{4}$ is Lorentz invariant, as it can be derived by calculating the inner (dot) product of the energy-momentum four vector

$$
p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

with itself.
The dot product of any two four vectors in Minkowski's space time is by definition invariant with respect to Lorentz transformations.
Let us calculate

$$
p^{2}=p \cdot p=
$$

Relativistic Wave Equation

Let us remind that the relationship $E^{2}-\bar{p}^{2} c^{2}=m^{2} c^{4}$ is Lorentz invariant, as it can be derived by calculating the inner (dot) product of the energy-momentum four vector

$$
p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

with itself.
The dot product of any two four vectors in Minkowski's space time is by definition invariant with respect to Lorentz transformations.
Let us calculate

$$
p^{2}=p \cdot p=p_{\mu} p^{\mu}=
$$

Relativistic Wave Equation

Let us remind that the relationship $E^{2}-\bar{p}^{2} c^{2}=m^{2} c^{4}$ is Lorentz invariant, as it can be derived by calculating the inner (dot) product of the energy-momentum four vector

$$
p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

with itself.
The dot product of any two four vectors in Minkowski's space time is by definition invariant with respect to Lorentz transformations.
Let us calculate

$$
p^{2}=p \cdot p=p_{\mu} p^{\mu}=p^{0^{2}}-\vec{p}^{2}=
$$

Relativistic Wave Equation

Let us remind that the relationship $E^{2}-\bar{p}^{2} c^{2}=m^{2} c^{4}$ is Lorentz invariant, as it can be derived by calculating the inner (dot) product of the energy-momentum four vector

$$
p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

with itself.
The dot product of any two four vectors in Minkowski's space time is by definition invariant with respect to Lorentz transformations.
Let us calculate

$$
p^{2}=p \cdot p=p_{\mu} p^{\mu}=p^{0^{2}}-\vec{p}^{2}=\frac{E^{2}}{c^{2}}-\vec{p}^{2} .
$$

Relativistic Wave Equation

Let us remind that the relationship $E^{2}-\bar{p}^{2} c^{2}=m^{2} c^{4}$ is Lorentz invariant, as it can be derived by calculating the inner (dot) product of the energy-momentum four vector

$$
p^{\mu}=\left(\frac{E}{c}, \vec{p}\right)
$$

with itself.
The dot product of any two four vectors in Minkowski's space time is by definition invariant with respect to Lorentz transformations.
Let us calculate

$$
p^{2}=p \cdot p=p_{\mu} p^{\mu}=p^{0^{2}}-\vec{p}^{2}=\frac{E^{2}}{c^{2}}-\vec{p}^{2}
$$

Relativistic Wave Equation

Let us remind that

$$
E=\gamma m c^{2}, \quad \vec{p}=\gamma m \vec{v}
$$

where the Lorentz factor γ is given by

$$
\gamma=\frac{1}{\sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}}
$$

Hence

Relativistic Wave Equation

Let us remind that

$$
E=\gamma m c^{2}, \quad \vec{p}=\gamma m \vec{v},
$$

where the Lorentz factor γ is given by

$$
\gamma=\frac{1}{\sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}}
$$

Hence
$p^{2}=\frac{E^{2}}{c^{2}}-\vec{p}^{2}=\gamma^{2}\left(m^{2} c^{2}-m^{2} \vec{v}^{2}\right)=$

Relativistic Wave Equation

Let us remind that

$$
E=\gamma m c^{2}, \quad \vec{p}=\gamma m \vec{v},
$$

where the Lorentz factor γ is given by

$$
\gamma=\frac{1}{\sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}}
$$

Hence

$$
p^{2}=\frac{E^{2}}{c^{2}}-\vec{p}^{2}=\gamma^{2}\left(m^{2} c^{2}-m^{2} \vec{v}^{2}\right)=m^{2} c^{2} \gamma^{2}\left(1-\frac{\vec{v}^{2}}{c^{2}}\right)=
$$

Relativistic Wave Equation

Let us remind that

$$
E=\gamma m c^{2}, \quad \vec{p}=\gamma m \vec{v},
$$

where the Lorentz factor γ is given by

$$
\gamma=\frac{1}{\sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}}
$$

Hence

$$
p^{2}=\frac{E^{2}}{c^{2}}-\vec{p}^{2}=\gamma^{2}\left(m^{2} c^{2}-m^{2} \vec{v}^{2}\right)=m^{2} c^{2} \gamma^{2}\left(1-\frac{\vec{v}^{2}}{c^{2}}\right)=m^{2} c^{2}
$$

Relativistic Wave Equation

Let us remind that

$$
E=\gamma m c^{2}, \quad \vec{p}=\gamma m \vec{v},
$$

where the Lorentz factor γ is given by

$$
\gamma=\frac{1}{\sqrt{1-\frac{\vec{v}^{2}}{c^{2}}}}
$$

Hence

$$
p^{2}=\frac{E^{2}}{c^{2}}-\vec{p}^{2}=\gamma^{2}\left(m^{2} c^{2}-m^{2} \vec{v}^{2}\right)=m^{2} c^{2} \gamma^{2}\left(1-\frac{\vec{v}^{2}}{c^{2}}\right)=m^{2} c^{2}
$$

Relativistic Wave Equation

We got the equation

$$
\frac{E^{2}}{c^{2}}-\vec{p}^{2}=m^{2} c^{2}
$$

which after multiplying its both sides by c^{2} gives our starting relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$.
Substituting

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

Relativistic Wave Equation

We got the equation

$$
\frac{E^{2}}{c^{2}}-\vec{p}^{2}=m^{2} c^{2}
$$

which after multiplying its both sides by c^{2} gives our starting relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$.
Substituting

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

in it we get the relativistic wave equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x}) .
$$

Relativistic Wave Equation

We got the equation

$$
\frac{E^{2}}{c^{2}}-\vec{p}^{2}=m^{2} c^{2}
$$

which after multiplying its both sides by c^{2} gives our starting relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$.
Substituting

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

in it we get the relativistic wave equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x})
$$

Relativistic Wave Equation

Dividing both sides of the equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x})
$$

by $-\hbar^{2}$ after having shifted $m^{2} c^{2} \varphi(t, \vec{x})$ to the I.h.s. we get the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0 .
$$

Relativistic Wave Equation

Dividing both sides of the equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x})
$$

by $-\hbar^{2}$ after having shifted $m^{2} c^{2} \varphi(t, \vec{x})$ to the I.h.s. we get the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

Let us define the time-space four vector

$x \equiv x^{\mu}=\left(x^{0}, \vec{x}\right)=(c t, \vec{x})$, then

Relativistic Wave Equation

Dividing both sides of the equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x})
$$

by $-\hbar^{2}$ after having shifted $m^{2} c^{2} \varphi(t, \vec{x})$ to the I.h.s. we get the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

Let us define the time-space four vector
$x \equiv x^{\mu}=\left(x^{0}, \vec{x}\right)=(c t, \vec{x})$, then

$$
\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}=\frac{\partial^{2}}{\partial x^{0^{2}}}-\frac{\partial^{2}}{\partial x^{1^{2}}}-\frac{\partial^{2}}{\partial x^{22}}-\frac{\partial^{2}}{\partial x^{3^{2}}}
$$

Relativistic Wave Equation

Dividing both sides of the equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x})
$$

by $-\hbar^{2}$ after having shifted $m^{2} c^{2} \varphi(t, \vec{x})$ to the I.h.s. we get the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

Let us define the time-space four vector $x \equiv x^{\mu}=\left(x^{0}, \vec{x}\right)=(c t, \vec{x})$, then

Relativistic Wave Equation

Dividing both sides of the equation

$$
\left[-\hbar^{2} \frac{\partial^{2}}{\partial(c t)^{2}}+\hbar^{2} \vec{\nabla}^{2}\right] \varphi(t, \vec{x})=m^{2} c^{2} \varphi(t, \vec{x})
$$

by $-\hbar^{2}$ after having shifted $m^{2} c^{2} \varphi(t, \vec{x})$ to the I.h.s. we get the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

Let us define the time-space four vector $x \equiv x^{\mu}=\left(x^{0}, \vec{x}\right)=(c t, \vec{x})$, then

$$
\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}=\frac{\partial^{2}}{\partial x^{0^{2}}}-\frac{\partial^{2}}{\partial x^{1^{2}}}-\frac{\partial^{2}}{\partial{x^{2^{2}}}-\frac{\partial^{2}}{\partial{x^{3^{2}}}^{2}} \equiv \square, ~, ~, ~}
$$

Relativistic Wave Equation

where we have introduced symbol \square to denote the d'Alembert operator.
Moreover, let us denote $\mu^{2} \equiv \frac{m^{2} c^{2}}{\hbar^{2}}$, then the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

takes the simple form

Relativistic Wave Equation

where we have introduced symbol \square to denote the d'Alembert operator.
Moreover, let us denote $\mu^{2} \equiv \frac{m^{2} c^{2}}{\hbar^{2}}$, then the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

takes the simple form

$$
\left(\square+\mu^{2}\right) \varphi(x)=0
$$

Relativistic Wave Equation

where we have introduced symbol \square to denote the d'Alembert operator.
Moreover, let us denote $\mu^{2} \equiv \frac{m^{2} c^{2}}{\hbar^{2}}$, then the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

takes the simple form

$$
\left(\square+\mu^{2}\right) \varphi(x)=0
$$

This is the Klein-Gordon wave equation.

Relativistic Wave Equation

where we have introduced symbol \square to denote the d'Alembert operator.
Moreover, let us denote $\mu^{2} \equiv \frac{m^{2} c^{2}}{\hbar^{2}}$, then the equation

$$
\left[\frac{\partial^{2}}{\partial(c t)^{2}}-\vec{\nabla}^{2}+\frac{m^{2} c^{2}}{\hbar^{2}}\right] \varphi(t, \vec{x})=0
$$

takes the simple form

$$
\left(\square+\mu^{2}\right) \varphi(x)=0
$$

This is the Klein-Gordon wave equation.

Klein-Gordon Wave Equation

Despite being realistically invariant, the Klein-Gordon equation has some shortcomings which make it practically useless for the sake of quantum mechanical description of a relativistic particle, as e.g. electron.
We will discuss those shortcomings in the following.

Klein-Gordon Wave Equation

Despite being realistically invariant, the Klein-Gordon equation has some shortcomings which make it practically useless for the sake of quantum mechanical description of a relativistic particle, as e.g. electron.
We will discuss those shortcomings in the following.
If the wave function in the Klein-Gordon equation is complex, then we can define the probability current

$$
j^{\mu}(x) \equiv i\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \equiv(\rho(x), \vec{j}(x)),
$$

Klein-Gordon Wave Equation

Despite being realistically invariant, the Klein-Gordon equation has some shortcomings which make it practically useless for the sake of quantum mechanical description of a relativistic particle, as e.g. electron.
We will discuss those shortcomings in the following. If the wave function in the Klein-Gordon equation is complex, then we can define the probability current

$$
j^{\mu}(x) \equiv i\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \equiv(\rho(x), \vec{j}(x))
$$

where we have introduced a shorthand notation for the differential
operator

Klein-Gordon Wave Equation

Despite being realistically invariant, the Klein-Gordon equation has some shortcomings which make it practically useless for the sake of quantum mechanical description of a relativistic particle, as e.g. electron.
We will discuss those shortcomings in the following.
If the wave function in the Klein-Gordon equation is complex, then we can define the probability current

$$
j^{\mu}(x) \equiv i\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \equiv(\rho(x), \vec{j}(x))
$$

where we have introduced a shorthand notation for the differential operator

Klein-Gordon Wave Equation

Despite being realistically invariant, the Klein-Gordon equation has some shortcomings which make it practically useless for the sake of quantum mechanical description of a relativistic particle, as e.g. electron.
We will discuss those shortcomings in the following.
If the wave function in the Klein-Gordon equation is complex, then we can define the probability current

$$
j^{\mu}(x) \equiv i\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \equiv(\rho(x), \vec{j}(x))
$$

where we have introduced a shorthand notation for the differential operator

$$
\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}, \quad \partial^{\mu} \equiv \frac{\partial}{\partial x_{\mu}}
$$

Exercise. Show that ∂_{μ} is a covariant and ∂^{μ} is a contravariant four vector.
The current $j^{\mu}(x)$ satisfies the following continuity equation

$$
\partial_{\mu} j^{\mu}(x)=0 .
$$

Klein-Gordon Wave Equation

Exercise. Show that ∂_{μ} is a covariant and ∂^{μ} is a contravariant four vector.
The current $j^{\mu}(x)$ satisfies the following continuity equation

$$
\partial_{\mu} j^{\mu}(x)=0 .
$$

In order to prove this statement let us first write down the Klein-Gordon equation for the complex conjugate wave function $\varphi^{*}(x)$.

Klein-Gordon Wave Equation

Exercise. Show that ∂_{μ} is a covariant and ∂^{μ} is a contravariant four vector.
The current $j^{\mu}(x)$ satisfies the following continuity equation

$$
\partial_{\mu} j^{\mu}(x)=0 .
$$

In order to prove this statement let us first write down the Klein-Gordon equation for the complex conjugate wave function $\varphi^{*}(x)$.
To this end let us conjugate the Klein-Gordon equation

$$
\left(\square+\mu^{2}\right) \varphi^{*}(x)=0
$$

Klein-Gordon Wave Equation

Exercise. Show that ∂_{μ} is a covariant and ∂^{μ} is a contravariant four vector.
The current $j^{\mu}(x)$ satisfies the following continuity equation

$$
\partial_{\mu} j^{\mu}(x)=0 .
$$

In order to prove this statement let us first write down the Klein-Gordon equation for the complex conjugate wave function $\varphi^{*}(x)$.
To this end let us conjugate the Klein-Gordon equation

$$
\left(\square+\mu^{2}\right) \varphi^{*}(x)=0
$$

Where we have used the fact that both the d'Alembert operator \square and the parameter μ^{2} are real.

Klein-Gordon Wave Equation

Exercise. Show that ∂_{μ} is a covariant and ∂^{μ} is a contravariant four vector.
The current $j^{\mu}(x)$ satisfies the following continuity equation

$$
\partial_{\mu} j^{\mu}(x)=0 .
$$

In order to prove this statement let us first write down the Klein-Gordon equation for the complex conjugate wave function $\varphi^{*}(x)$.
To this end let us conjugate the Klein-Gordon equation

$$
\left(\square+\mu^{2}\right) \varphi^{*}(x)=0
$$

Where we have used the fact that both the d'Alembert operator \square and the parameter μ^{2} are real.

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\partial_{\mu} j^{\mu}(x)=i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right]
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\partial_{\mu} j^{\mu}(x)=i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right]
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x) & =i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
& =i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right.
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right]
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right]
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right]
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right]
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\left(\square+\mu^{2}\right) \varphi(x)=0
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0,
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\left(\square+\mu^{2}\right) \varphi(x)=0
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
& =i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
& =i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0,
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\left(\square+\mu^{2}\right) \varphi(x)=0 \quad \Rightarrow \quad \square \varphi(x)=-\mu^{2} \varphi(x)
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\begin{aligned}
\left(\square+\mu^{2}\right) \varphi(x) & =0 \quad \Rightarrow \quad \square \varphi(x)=-\mu^{2} \varphi(x) \\
\left(\square+\mu^{2}\right) \varphi^{*}(x) & =0
\end{aligned}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
= & i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\begin{aligned}
\left(\square+\mu^{2}\right) \varphi(x)=0 & \Rightarrow \quad \square \varphi(x)=-\mu^{2} \varphi(x) \\
\left(\square+\mu^{2}\right) \varphi^{*}(x) & =0
\end{aligned} \quad \Rightarrow \quad \text {, }
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
& =i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
& =i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0,
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\begin{array}{rlll}
\left(\square+\mu^{2}\right) \varphi(x)=0 & \Rightarrow & \square \varphi(x)=-\mu^{2} \varphi(x), \\
\left(\square+\mu^{2}\right) \varphi^{*}(x)=0 & \Rightarrow & \square \varphi^{*}(x)=-\mu^{2} \varphi^{*}(x) .
\end{array}
$$

Klein-Gordon Wave Equation

Let us now calculate the four divergence of the current $j^{\mu}(x)$

$$
\begin{aligned}
\partial_{\mu} j^{\mu}(x)= & i \partial_{\mu}\left[\varphi^{*}(x) \partial^{\mu} \varphi(x)-\partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
= & i\left[\partial_{\mu} \varphi^{*}(x) \partial^{\mu} \varphi(x)+\varphi^{*}(x) \partial_{\mu} \partial^{\mu} \varphi(x)\right. \\
& \left.\quad-\partial_{\mu} \partial^{\mu}\left(\varphi^{*}(x)\right) \varphi(x)-\partial^{\mu} \varphi^{*}(x) \partial_{\mu} \varphi(x)\right] \\
& =i\left[\varphi^{*}(x) \square \varphi(x)-\square\left(\varphi^{*}(x)\right) \varphi(x)\right] \\
& =i\left[\varphi^{*}(x)\left(-\mu^{2}\right) \varphi(x)+\mu^{2} \varphi^{*}(x) \varphi(x)\right]=0,
\end{aligned}
$$

where we have used the Klein-Gordon equation and its complex conjugate

$$
\begin{array}{rlll}
\left(\square+\mu^{2}\right) \varphi(x)=0 & \Rightarrow & \square \varphi(x)=-\mu^{2} \varphi(x), \\
\left(\square+\mu^{2}\right) \varphi^{*}(x)=0 & \Rightarrow & \square \varphi^{*}(x)=-\mu^{2} \varphi^{*}(x) .
\end{array}
$$

Klein-Gordon Wave Equation

We would like to interpret the zeroth component $j^{0}(x)$ of the current $j^{\mu}(x)$ as the probability density $\rho(x)$ of finding a particle in the spatial volume element $\mathrm{d}^{3} x$ at time t.
Unfortunately,

$$
\rho(x)=i\left[\varphi^{*}(x) \partial^{0} \varphi(x)-\partial^{0}\left(\varphi^{*}(x)\right) \varphi(x)\right]
$$

is not a positively defined quantity, which in practice excludes the probabilistic interpretation of the wave function $\varphi(x)$.

Klein-Gordon Wave Equation

We would like to interpret the zeroth component $j^{0}(x)$ of the current $j^{\mu}(x)$ as the probability density $\rho(x)$ of finding a particle in the spatial volume element $\mathrm{d}^{3} x$ at time t.
Unfortunately,

$$
\rho(x)=i\left[\varphi^{*}(x) \partial^{0} \varphi(x)-\partial^{0}\left(\varphi^{*}(x)\right) \varphi(x)\right]
$$

is not a positively defined quantity, which in practice excludes the probabilistic interpretation of the wave function $\varphi(x)$.
Moreover, if the wave function $\varphi(x)$ of the Klein-Gordon equation is real, then the current $j^{\mu}(x)$ is identically equal to 0 .

Klein-Gordon Wave Equation

We would like to interpret the zeroth component $j^{0}(x)$ of the current $j^{\mu}(x)$ as the probability density $\rho(x)$ of finding a particle in the spatial volume element $\mathrm{d}^{3} x$ at time t.
Unfortunately,

$$
\rho(x)=i\left[\varphi^{*}(x) \partial^{0} \varphi(x)-\partial^{0}\left(\varphi^{*}(x)\right) \varphi(x)\right]
$$

is not a positively defined quantity, which in practice excludes the probabilistic interpretation of the wave function $\varphi(x)$. Moreover, if the wave function $\varphi(x)$ of the Klein-Gordon equation is real, then the current $j^{\mu}(x)$ is identically equal to 0 .

Klein-Gordon Wave Equation

If, in spite of that, we assumed that $|\varphi(x)|^{2}$ is the probability density of finding a particle in the spatial volume element $d^{3} x$ at time t, then the probability normalization integral

$$
\int|\varphi(t, \vec{x})|^{2} \mathrm{~d}^{3} x=1
$$

would not be time conserved.
Another problem is related to the fact that there is the second derivative with respect to time in the Klein-Gordon equation, while we would like the relativistic wave equation to have the form analogous to the Schrödinger equation, i.e.

$$
i \hbar \frac{\partial \psi(x)}{\partial t}=H \psi(x)
$$

Klein-Gordon Wave Equation

If, in spite of that, we assumed that $|\varphi(x)|^{2}$ is the probability density of finding a particle in the spatial volume element $d^{3} x$ at time t, then the probability normalization integral

$$
\int|\varphi(t, \vec{x})|^{2} \mathrm{~d}^{3} x=1
$$

would not be time conserved.
Another problem is related to the fact that there is the second derivative with respect to time in the Klein-Gordon equation, while we would like the relativistic wave equation to have the form analogous to the Schrödinger equation, i.e.

$$
i \hbar \frac{\partial \psi(x)}{\partial t}=H \psi(x)
$$

Klein-Gordon Wave Equation

If we take the square root of the relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$, then we obtain the relativistic formula for the particle energy

$$
E= \pm \sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
$$

We want the particle energy to be positive, thus we choose

$$
E=\sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
$$

Klein-Gordon Wave Equation

If we take the square root of the relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$, then we obtain the relativistic formula for the particle energy

$$
E= \pm \sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
$$

We want the particle energy to be positive, thus we choose

$$
E=\sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
$$

If we now substitute

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

into this formula, we would end up with the integral operator on the r.h.s. of the corresponding wave equation.

Klein-Gordon Wave Equation

If we take the square root of the relationship $E^{2}-\vec{p}^{2} c^{2}=m^{2} c^{4}$, then we obtain the relativistic formula for the particle energy

$$
E= \pm \sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
$$

We want the particle energy to be positive, thus we choose

$$
E=\sqrt{\vec{p}^{2} c^{2}+m^{2} c^{4}}
$$

If we now substitute

$$
E \rightarrow i \hbar \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow-i \hbar \vec{\nabla}
$$

into this formula, we would end up with the integral operator on the r.h.s. of the corresponding wave equation.

Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

$$
\psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
$$

Then

Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

$$
\psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
$$

Then

$$
-i \hbar \vec{\nabla} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int d^{3} k(-i \hbar \vec{\nabla}) e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
$$

Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

$$
\psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) .
$$

Then

$$
-i \hbar \vec{\nabla} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k(-i \hbar \vec{\nabla}) e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
$$

Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

$$
\psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) .
$$

Then

$$
\begin{aligned}
-i \hbar \vec{\nabla} \psi(t, \vec{x}) & =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k(-i \hbar \vec{\nabla}) e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \hbar \vec{k} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
\end{aligned}
$$

Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

$$
\psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) .
$$

Then

$$
\begin{aligned}
-i \hbar \vec{\nabla} \psi(t, \vec{x}) & =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k(-i \hbar \vec{\nabla}) e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \hbar \vec{k} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
\end{aligned}
$$

Exercise. Show that

$$
\vec{\nabla} e^{i \vec{k} \cdot \vec{x}}=i \vec{k} e^{i \vec{k} \cdot \vec{x}} .
$$

Klein-Gordon Wave Equation

To see this let us Fourier transform the wave function

$$
\psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) .
$$

Then

$$
\begin{aligned}
-i \hbar \vec{\nabla} \psi(t, \vec{x}) & =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k(-i \hbar \vec{\nabla}) e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k}) \\
& =\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \hbar \vec{k} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})
\end{aligned}
$$

Exercise. Show that

$$
\vec{\nabla} e^{i \vec{k} \cdot \vec{x}}=i \vec{k} e^{i \vec{k} \cdot \vec{x}}
$$

Klein-Gordon Wave Equation

Now let us calculate
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int d^{3} k \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})$.

Klein-Gordon Wave Equation

Now let us calculate
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})$.
In order to have the wave function $\psi(t, \vec{x})$ on the r.h.s. we have to perform an inverse Fourier transformation

Klein-Gordon Wave Equation

Now let us calculate
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})$.
In order to have the wave function $\psi(t, \vec{x})$ on the r.h.s. we have to perform an inverse Fourier transformation

$$
\begin{aligned}
\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})= & \frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} x^{\prime} \int \mathrm{d}^{3} k \\
& \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)} \psi\left(t, \vec{x}^{\prime}\right) .
\end{aligned}
$$

We see that the operator on I.h.s. is an integral operator.

Klein-Gordon Wave Equation

Now let us calculate
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})$.
In order to have the wave function $\psi(t, \vec{x})$ on the r.h.s. we have to perform an inverse Fourier transformation

$$
\begin{aligned}
\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})= & \frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} x^{\prime} \int \mathrm{d}^{3} k \\
& \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)} \psi\left(t, \vec{x}^{\prime}\right) .
\end{aligned}
$$

We see that the operator on I.h.s. is an integral operator. It is not
a linear operator either.

Klein-Gordon Wave Equation

Now let us calculate
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})$.
In order to have the wave function $\psi(t, \vec{x})$ on the r.h.s. we have to perform an inverse Fourier transformation
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} x^{\prime} \int \mathrm{d}^{3} k$

$$
\sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)} \psi\left(t, \vec{x}^{\prime}\right) .
$$

We see that the operator on I.h.s. is an integral operator. It is not a linear operator either.
To circumvent those problems we will proceed in a different way.

Klein-Gordon Wave Equation

Now let us calculate
$\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})=\frac{1}{(2 \pi)^{\frac{3}{2}}} \int \mathrm{~d}^{3} k \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot \vec{x}} \tilde{\psi}(t, \vec{k})$.
In order to have the wave function $\psi(t, \vec{x})$ on the r.h.s. we have to perform an inverse Fourier transformation

$$
\begin{aligned}
\sqrt{-\hbar^{2} c^{2} \vec{\nabla}^{2}+m^{2} c^{4}} \psi(t, \vec{x})= & \frac{1}{(2 \pi)^{3}} \int \mathrm{~d}^{3} x^{\prime} \int \mathrm{d}^{3} k \\
& \sqrt{\hbar^{2} c^{2} \vec{k}^{2}+m^{2} c^{4}} e^{i \vec{k} \cdot\left(\vec{x}-\vec{x}^{\prime}\right)} \psi\left(t, \vec{x}^{\prime}\right) .
\end{aligned}
$$

We see that the operator on I.h.s. is an integral operator. It is not a linear operator either.
To circumvent those problems we will proceed in a different way.

Dirac Equation

Let us assume that the Hamiltonian in the relativistic wave equation

$$
i \hbar \frac{\partial \psi(x)}{\partial t}=H \psi(x)
$$

can be expressed in the following form

$$
H=\vec{\alpha} \cdot \vec{p}+\beta m
$$

such that

$$
H^{2}=\vec{p}^{2}+m^{2} .
$$

Dirac Equation

Let us assume that the Hamiltonian in the relativistic wave equation

$$
i \hbar \frac{\partial \psi(x)}{\partial t}=H \psi(x)
$$

can be expressed in the following form

$$
H=\vec{\alpha} \cdot \vec{p}+\beta m
$$

such that

$$
H^{2}=\vec{p}^{2}+m^{2} .
$$

We use hear natural units, where

$$
\hbar=1 \quad \text { and } \quad c=1
$$

Dirac Equation

Let us assume that the Hamiltonian in the relativistic wave equation

$$
i \hbar \frac{\partial \psi(x)}{\partial t}=H \psi(x)
$$

can be expressed in the following form

$$
H=\vec{\alpha} \cdot \vec{p}+\beta m
$$

such that

$$
H^{2}=\vec{p}^{2}+m^{2} .
$$

We use hear natural units, where

$$
\hbar=1 \quad \text { and } \quad c=1
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
H^{2}=\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right)
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2}
\end{aligned}
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2}
\end{aligned}
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2} \\
& =\frac{1}{2} \alpha_{i} \alpha_{j} p_{i} p_{j}+\frac{1}{2} \alpha_{j} \alpha_{i} p_{j} p_{i}+\alpha_{i} \beta m p_{i}+\beta \alpha_{i} m p_{i}+\beta^{2} m^{2}
\end{aligned}
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2} \\
& =\frac{1}{2} \alpha_{i} \alpha_{j} p_{i} p_{j}+\frac{1}{2} \alpha_{j} \alpha_{i} p_{j} p_{i}+\alpha_{i} \beta m p_{i}+\beta \alpha_{i} m p_{i}+\beta^{2} m^{2}
\end{aligned}
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2} \\
& =\frac{1}{2} \alpha_{i} \alpha_{j} p_{i} p_{j}+\frac{1}{2} \alpha_{j} \alpha_{i} p_{j} p_{i}+\alpha_{i} \beta m p_{i}+\beta \alpha_{i} m p_{i}+\beta^{2} m^{2} \\
& =\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}
\end{aligned}
$$

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2} \\
& =\frac{1}{2} \alpha_{i} \alpha_{j} p_{i} p_{j}+\frac{1}{2} \alpha_{j} \alpha_{i} p_{j} p_{i}+\alpha_{i} \beta m p_{i}+\beta \alpha_{i} m p_{i}+\beta^{2} m^{2} \\
& =\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}
\end{aligned}
$$

where we have symmetrized the coefficient of the $p_{i} p_{j}$ term in order to avoid possible cancellations between coefficients in front of $p_{i} p_{j}$ and $p_{j} p_{i}$.

Dirac Equation

Let us calculate square of the Hamilton operator

$$
\begin{aligned}
H^{2} & =\left(\alpha_{i} p_{i}+\beta m\right)\left(\alpha_{j} p_{j}+\beta m\right) \\
& =\alpha_{i} \alpha_{j} p_{i} p_{j}+\alpha_{i} p_{i} \beta m+\beta m \alpha_{j} p_{j}+\beta^{2} m^{2} \\
& =\frac{1}{2} \alpha_{i} \alpha_{j} p_{i} p_{j}+\frac{1}{2} \alpha_{j} \alpha_{i} p_{j} p_{i}+\alpha_{i} \beta m p_{i}+\beta \alpha_{i} m p_{i}+\beta^{2} m^{2} \\
& =\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}
\end{aligned}
$$

where we have symmetrized the coefficient of the $p_{i} p_{j}$ term in order to avoid possible cancellations between coefficients in front of $p_{i} p_{j}$ and $p_{j} p_{i}$.

Dirac Equation

On the other hand, we want that

$$
H^{2}=p_{i} p_{i}+m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}
$$

Dirac Equation

On the other hand, we want that

$$
H^{2}=p_{i} p_{i}+m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}
$$

where the coefficient of $p_{i} p_{j}$ is already symmetric.

Dirac Equation

On the other hand, we want that

$$
H^{2}=p_{i} p_{i}+m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}
$$

where the coefficient of $p_{i} p_{j}$ is already symmetric.
Let us compare both formula for H^{2}.
$\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}$.

Dirac Equation

On the other hand, we want that

$$
H^{2}=p_{i} p_{i}+m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}
$$

where the coefficient of $p_{i} p_{j}$ is already symmetric.
Let us compare both formula for H^{2}.
$\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}$.
Thus we see that the following relationships must hold

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Dirac Equation

On the other hand, we want that

$$
H^{2}=p_{i} p_{i}+m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}
$$

where the coefficient of $p_{i} p_{j}$ is already symmetric.
Let us compare both formula for H^{2}.
$\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}$.
Thus we see that the following relationships must hold

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I}
$$

It is obvious that $\alpha_{i}, \quad i=1,2,3$, and β must be matrices, and
hence \mathbb{I} must be a unit matrix.

Dirac Equation

On the other hand, we want that

$$
H^{2}=p_{i} p_{i}+m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}
$$

where the coefficient of $p_{i} p_{j}$ is already symmetric.
Let us compare both formula for H^{2}.
$\frac{1}{2}\left(\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}\right) p_{i} p_{j}+\left(\alpha_{i} \beta+\beta \alpha_{i}\right) m p_{i}+\beta^{2} m^{2}=\delta_{i j} p_{i} p_{j}+m^{2}$.
Thus we see that the following relationships must hold

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

It is obvious that $\alpha_{i}, \quad i=1,2,3$, and β must be matrices, and hence \mathbb{I} must be a unit matrix.

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?
Assume $i \neq j$, then

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}=0
$$

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?
Assume $i \neq j$, then

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}=0
$$

$\alpha_{i} \alpha_{j}=-\alpha_{j} \alpha_{i}$.

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?
Assume $i \neq j$, then

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}=0 \quad \Rightarrow \quad \alpha_{i} \alpha_{j}=-\alpha_{j} \alpha_{i}
$$

Calculate the determinant of both sides

$$
\operatorname{det}\left(\alpha_{i} \alpha_{j}\right)=\operatorname{det}\left(-\alpha_{j} \alpha_{i}\right)
$$

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?
Assume $i \neq j$, then

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}=0 \quad \Rightarrow \quad \alpha_{i} \alpha_{j}=-\alpha_{j} \alpha_{i}
$$

Calculate the determinant of both sides

$$
\operatorname{det}\left(\alpha_{i} \alpha_{j}\right)=\operatorname{det}\left(-\alpha_{j} \alpha_{i}\right)=(-1)^{d} \operatorname{det}\left(\alpha_{i} \alpha_{j}\right)
$$

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?
Assume $i \neq j$, then

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}=0 \quad \Rightarrow \quad \alpha_{i} \alpha_{j}=-\alpha_{j} \alpha_{i}
$$

Calculate the determinant of both sides

$$
\operatorname{det}\left(\alpha_{i} \alpha_{j}\right)=\operatorname{det}\left(-\alpha_{j} \alpha_{i}\right)=(-1)^{d} \operatorname{det}\left(\alpha_{i} \alpha_{j}\right)
$$

where $d \times d$ is the dimension of matrix α_{i}.

Dirac Equation

In order the Hamiltonian $H=\alpha_{i} p_{i}+\beta m$ to be Hermitian, the matrices α_{i} and β must be Hermitian themselves, i.e.

$$
\alpha_{i}^{\dagger}=\alpha_{i}, \quad i=1,2,3, \quad \beta^{\dagger}=\beta
$$

thus they are squared matrices.
What is their dimension?
Assume $i \neq j$, then

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}=0 \Rightarrow \alpha_{i} \alpha_{j}=-\alpha_{j} \alpha_{i}
$$

Calculate the determinant of both sides

$$
\operatorname{det}\left(\alpha_{i} \alpha_{j}\right)=\operatorname{det}\left(-\alpha_{j} \alpha_{i}\right)=(-1)^{d} \operatorname{det}\left(\alpha_{i} \alpha_{j}\right)
$$

where $d \times d$ is the dimension of matrix α_{i}.

Dirac Equation

Thus we see that d must be an even number for matrix α_{i}. The same holds obviously for matrix β.

Dirac Equation

Thus we see that d must be an even number for matrix α_{i}. The same holds obviously for matrix β.
The smallest nontrivial choice would be $d=2$.

Dirac Equation

Thus we see that d must be an even number for matrix α_{i}. The same holds obviously for matrix β.
The smallest nontrivial choice would be $d=2$.
There are Hermitian 2×2 matrices which satisfy analogous relationships as those for α_{i} and β

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Dirac Equation

Thus we see that d must be an even number for matrix α_{i}. The same holds obviously for matrix β.
The smallest nontrivial choice would be $d=2$.
There are Hermitian 2×2 matrices which satisfy analogous relationships as those for α_{i} and β

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I}
$$

They are commonly known as the Pauli matrices

Dirac Equation

Thus we see that d must be an even number for matrix α_{i}. The same holds obviously for matrix β.
The smallest nontrivial choice would be $d=2$.
There are Hermitian 2×2 matrices which satisfy analogous relationships as those for α_{i} and β

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

They are commonly known as the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

for which it holds $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j}, \quad i, j=1,2,3$.

Dirac Equation

Thus we see that d must be an even number for matrix α_{i}. The same holds obviously for matrix β. The smallest nontrivial choice would be $d=2$.
There are Hermitian 2×2 matrices which satisfy analogous relationships as those for α_{i} and β

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

They are commonly known as the Pauli matrices

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

for which it holds $\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j}, \quad i, j=1,2,3$.

Dirac Equation

However, the fourth matrix is missing for $d=2$.
Thus, let us choose $d=4$.

Dirac Equation

However, the fourth matrix is missing for $d=2$.
Thus, let us choose $d=4$.
Before we find an explicit form of the matrices α_{i} and β satisfying the desired relationships we define new matrices $\gamma^{\mu}, \mu=0,1,2,3$,

$$
\gamma^{0} \equiv \beta, \quad \gamma^{i} \equiv \beta \alpha_{i}, \quad i=1,2,3 .
$$

Dirac Equation

However, the fourth matrix is missing for $d=2$.
Thus, let us choose $d=4$.
Before we find an explicit form of the matrices α_{i} and β satisfying the desired relationships we define new matrices $\gamma^{\mu}, \mu=0,1,2,3$,

$$
\gamma^{0} \equiv \beta, \quad \gamma^{i} \equiv \beta \alpha_{i}, \quad i=1,2,3
$$

Let us assume $\hbar=c=1$ and multiply the equation

$$
i \frac{\partial \psi(x)}{\partial t}=\left(\alpha_{i} p_{i}+\beta m\right) \psi(x)
$$

by β from the left and substitute $p_{i}=-i \partial_{i}$, then we get

Dirac Equation

However, the fourth matrix is missing for $d=2$.
Thus, let us choose $d=4$.
Before we find an explicit form of the matrices α_{i} and β satisfying the desired relationships we define new matrices $\gamma^{\mu}, \mu=0,1,2,3$,

$$
\gamma^{0} \equiv \beta, \quad \gamma^{i} \equiv \beta \alpha_{i}, \quad i=1,2,3
$$

Let us assume $\hbar=c=1$ and multiply the equation

$$
i \frac{\partial \psi(x)}{\partial t}=\left(\alpha_{i} p_{i}+\beta m\right) \psi(x)
$$

by β from the left and substitute $p_{i}=-i \partial_{i}$, then we get

Dirac Equation

However, the fourth matrix is missing for $d=2$.
Thus, let us choose $d=4$.
Before we find an explicit form of the matrices α_{i} and β satisfying the desired relationships we define new matrices $\gamma^{\mu}, \mu=0,1,2,3$,

$$
\gamma^{0} \equiv \beta, \quad \gamma^{i} \equiv \beta \alpha_{i}, \quad i=1,2,3
$$

Let us assume $\hbar=c=1$ and multiply the equation

$$
i \frac{\partial \psi(x)}{\partial t}=\left(\alpha_{i} p_{i}+\beta m\right) \psi(x)
$$

by β from the left and substitute $p_{i}=-i \partial_{i}$, then we get

$$
i \beta \frac{\partial \psi(x)}{\partial t}=\left(\beta \alpha_{i}\left(-i \partial_{i}\right)+\beta^{2} m\right) \psi(x)
$$

Dirac Equation

$$
i \beta \frac{\partial \psi(x)}{\partial t}=\left(\beta \alpha_{i}\left(-i \partial_{i}\right)+\beta^{2} m\right) \psi(x)
$$

Let us use the condition $\beta^{2}=\mathbb{I}$, insert definitions of matrices γ^{μ} : $\gamma^{0} \equiv \beta, \gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$, and shift everything to the I.h.s. of the equation

Dirac Equation

$$
i \beta \frac{\partial \psi(x)}{\partial t}=\left(\beta \alpha_{i}\left(-i \partial_{i}\right)+\beta^{2} m\right) \psi(x)
$$

Let us use the condition $\beta^{2}=\mathbb{I}$, insert definitions of matrices γ^{μ} : $\gamma^{0} \equiv \beta, \gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$, and shift everything to the I.h.s. of the equation

$$
\left(i \gamma^{0} \partial_{0}+i \gamma^{i} \partial_{i}-m\right) \psi(x)=0
$$

Dirac Equation

$$
i \beta \frac{\partial \psi(x)}{\partial t}=\left(\beta \alpha_{i}\left(-i \partial_{i}\right)+\beta^{2} m\right) \psi(x)
$$

Let us use the condition $\beta^{2}=\mathbb{I}$, insert definitions of matrices γ^{μ} : $\gamma^{0} \equiv \beta, \gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$, and shift everything to the I.h.s. of the equation

$$
\left(i \gamma^{0} \partial_{0}+i \gamma^{i} \partial_{i}-m\right) \psi(x)=0
$$

Combining the first and the second term in the parentheses we obtain the Dirac equation in the following form

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 .
$$

Dirac Equation

$$
i \beta \frac{\partial \psi(x)}{\partial t}=\left(\beta \alpha_{i}\left(-i \partial_{i}\right)+\beta^{2} m\right) \psi(x)
$$

Let us use the condition $\beta^{2}=\mathbb{I}$, insert definitions of matrices γ^{μ} : $\gamma^{0} \equiv \beta, \gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$, and shift everything to the I.h.s. of the equation

$$
\left(i \gamma^{0} \partial_{0}+i \gamma^{i} \partial_{i}-m\right) \psi(x)=0
$$

Combining the first and the second term in the parentheses we obtain the Dirac equation in the following form

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}$,

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}$,
$=\left(\beta \alpha_{i}\right)^{\dagger}$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}, \quad \gamma^{i \dagger}=\left(\beta \alpha_{i}\right)^{\dagger}=\alpha_{i}^{\dagger} \beta^{\dagger}$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}, \quad \gamma^{i \dagger}=\left(\beta \alpha_{i}\right)^{\dagger}=\alpha_{i}^{\dagger} \beta^{\dagger}=\alpha_{i} \beta$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}, \quad \gamma^{i \dagger}=\left(\beta \alpha_{i}\right)^{\dagger}=\alpha_{i}^{\dagger} \beta^{\dagger}=\alpha_{i} \beta=-\beta \alpha_{i}$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}, \quad \gamma^{i \dagger}=\left(\beta \alpha_{i}\right)^{\dagger}=\alpha_{i}^{\dagger} \beta^{\dagger}=\alpha_{i} \beta=-\beta \alpha_{i}=-\gamma^{i}$,
where we have used the following properties

$$
(A B)^{\dagger}=B^{\dagger} A^{\dagger} \quad \text { and } \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad i=1,2,3
$$

Dirac Equation

Let us define symbol $\not \partial=\gamma^{\mu} \partial_{\mu}$. With it, the Dirac equation takes a simple form

$$
(i \not \partial-m) \psi(x)=0 .
$$

We still have to find matrices γ^{μ} which satisfy the desired properties.
Let us verify properties of γ^{μ} 's under Hermitian conjugation.
$\gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0}, \quad \gamma^{i \dagger}=\left(\beta \alpha_{i}\right)^{\dagger}=\alpha_{i}^{\dagger} \beta^{\dagger}=\alpha_{i} \beta=-\beta \alpha_{i}=-\gamma^{i}$,
where we have used the following properties

$$
(A B)^{\dagger}=B^{\dagger} A^{\dagger} \quad \text { and } \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad i=1,2,3
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I}
$$

Let us calculate
$\gamma^{0} \gamma^{i}=\beta \beta \alpha_{i}$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I}
$$

Let us calculate
$\gamma^{0} \gamma^{i}=\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I}
$$

Let us calculate
$\gamma^{0} \gamma^{i}=\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate
$\gamma^{0} \gamma^{i}=\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0}$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate
$\gamma^{0} \gamma^{i}=\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0}$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 . \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 . \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 . \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta=-\beta\left(-\alpha_{j} \alpha_{i}+2 \delta_{i j}\right) \beta
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta=-\beta\left(-\alpha_{j} \alpha_{i}+2 \delta_{i j}\right) \beta \\
& =\beta \alpha_{j} \alpha_{i} \beta-2 \delta_{i j} \beta^{2}
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 . \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta=-\beta\left(-\alpha_{j} \alpha_{i}+2 \delta_{i j}\right) \beta \\
& =\beta \alpha_{j} \alpha_{i} \beta-2 \delta_{i j} \beta^{2}=-\beta \alpha_{j} \beta \alpha_{i}-2 \delta_{i j} \mathbb{I}
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta=-\beta\left(-\alpha_{j} \alpha_{i}+2 \delta_{i j}\right) \beta \\
& =\beta \alpha_{j} \alpha_{i} \beta-2 \delta_{i j} \beta^{2}=-\beta \alpha_{j} \beta \alpha_{i}-2 \delta_{i j} \mathbb{I}=-\gamma^{j} \gamma^{i}-2 \delta_{i j} \mathbb{I}
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta=-\beta\left(-\alpha_{j} \alpha_{i}+2 \delta_{i j}\right) \beta \\
& =\beta \alpha_{j} \alpha_{i} \beta-2 \delta_{i j} \beta^{2}=-\beta \alpha_{j} \beta \alpha_{i}-2 \delta_{i j} \mathbb{I}=-\gamma^{j} \gamma^{i}-2 \delta_{i j} \mathbb{I}
\end{aligned}
$$

Dirac Equation

And now check the commutation properties of γ^{μ} 's: $\gamma^{0} \equiv \beta$, $\gamma^{i} \equiv \beta \alpha_{i}, i=1,2,3$. Remember that

$$
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i}=2 \delta_{i j} \mathbb{I}, \quad \alpha_{i} \beta+\beta \alpha_{i}=0, \quad \beta^{2}=\mathbb{I} .
$$

Let us calculate

$$
\begin{aligned}
\gamma^{0} \gamma^{i} & =\beta \beta \alpha_{i}=\beta\left(-\alpha_{i} \beta\right)=-\beta \alpha_{i} \beta=-\gamma^{i} \gamma^{0} \\
& \Rightarrow \gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=0 . \\
\gamma^{i} \gamma^{j} & =\beta \alpha_{i} \beta \alpha_{j}=\beta \alpha_{i}\left(-\alpha_{j} \beta\right)=-\beta \alpha_{i} \alpha_{j} \beta=-\beta\left(-\alpha_{j} \alpha_{i}+2 \delta_{i j}\right) \beta \\
& =\beta \alpha_{j} \alpha_{i} \beta-2 \delta_{i j} \beta^{2}=-\beta \alpha_{j} \beta \alpha_{i}-2 \delta_{i j} \mathbb{I}=-\gamma^{j} \gamma^{i}-2 \delta_{i j} \mathbb{I} \\
& \Rightarrow \gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i}=-2 \delta_{i j} \mathbb{I} .
\end{aligned}
$$

Dirac Equation

Let us summarize our results

$$
\begin{aligned}
\gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0} & =0 \\
\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i} & =-2 \delta_{i j} \mathbb{I}
\end{aligned}
$$

and recall the form of the metric tensor

$$
g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

We see that

$$
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{I},
$$

where \mathbb{I} is the unit 4×4 matrix.

Dirac Equation

Let us summarize our results

$$
\begin{aligned}
\gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0} & =0 \\
\gamma^{i} \gamma^{j}+\gamma^{j} \gamma^{i} & =-2 \delta_{i j} \mathbb{I}
\end{aligned}
$$

and recall the form of the metric tensor

$$
g_{\mu \nu}=g^{\mu \nu}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)
$$

We see that

$$
\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{I},
$$

where \mathbb{I} is the unit 4×4 matrix.

Dirac Equation

The equations

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{I}, \quad \mu, \nu=0,1,2,3
$$

together with the Hermiticity properties $\gamma^{0 \dagger}=\gamma^{0}, \quad \gamma^{i \dagger}=-\gamma^{i}$ can be considered as definition of the Dirac matrices γ^{μ}, $\mu=0,1,2,3$.
The Dirac matrices can be chosen in the following way

where $\sigma_{i}, i=1,2,3$ are the Pauli matrices.

Dirac Equation

The equations

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{I}, \quad \mu, \nu=0,1,2,3
$$

together with the Hermiticity properties $\gamma^{0 \dagger}=\gamma^{0}, \quad \gamma^{i \dagger}=-\gamma^{i}$ can be considered as definition of the Dirac matrices γ^{μ}, $\mu=0,1,2,3$.
The Dirac matrices can be chosen in the following way

$$
\gamma^{0}=\left(\begin{array}{rr}
1 & 0 \\
0 & -l
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

where $\sigma_{i}, i=1,2,3$ are the Pauli matrices.
This choice of matrices γ^{μ} is called the Dirac representation.

Dirac Equation

The equations

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{I}, \quad \mu, \nu=0,1,2,3
$$

together with the Hermiticity properties $\gamma^{0 \dagger}=\gamma^{0}, \quad \gamma^{i \dagger}=-\gamma^{i}$ can be considered as definition of the Dirac matrices γ^{μ}, $\mu=0,1,2,3$.
The Dirac matrices can be chosen in the following way

$$
\gamma^{0}=\left(\begin{array}{rr}
1 & 0 \\
0 & -l
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

where $\sigma_{i}, i=1,2,3$ are the Pauli matrices.
This choice of matrices γ^{μ} is called the Dirac representation. By inspecting the form matrices γ^{μ} we immediately see that

Dirac Equation

The equations

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}=2 g^{\mu \nu} \mathbb{I}, \quad \mu, \nu=0,1,2,3
$$

together with the Hermiticity properties $\gamma^{0 \dagger}=\gamma^{0}, \quad \gamma^{i \dagger}=-\gamma^{i}$ can be considered as definition of the Dirac matrices γ^{μ}, $\mu=0,1,2,3$.
The Dirac matrices can be chosen in the following way

$$
\gamma^{0}=\left(\begin{array}{rr}
1 & 0 \\
0 & -l
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

where $\sigma_{i}, i=1,2,3$ are the Pauli matrices.
This choice of matrices γ^{μ} is called the Dirac representation. By inspecting the form matrices γ^{μ} we immediately see that $\gamma^{0 \dagger}=\gamma^{0}$ and $\gamma^{i \dagger}=-\gamma^{i}$.

Dirac Equation

Exercise. Show that γ^{μ} matrices in the Dirac representation satisfy the following anticommutation relationships

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{I}, \quad \mu, \nu=0,1,2,3
$$

In this way, we have shown that the Dirac equation is algebraically
correct.

Dirac Equation

Exercise. Show that γ^{μ} matrices in the Dirac representation satisfy the following anticommutation relationships

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{I}, \quad \mu, \nu=0,1,2,3
$$

In this way, we have shown that the Dirac equation is algebraically correct.

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate
$\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\}$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\}=\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\}=\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U=
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\}=\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U=
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U
\end{aligned}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U
\end{aligned}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U
\end{aligned}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=
\end{aligned}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U
\end{aligned}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Moreover, calculate

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Moreover, calculate

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Moreover, calculate

$$
\tilde{\gamma}^{0 \dagger}=\left(U^{\dagger} \gamma^{0} U\right)^{\dagger}=U^{\dagger}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Moreover, calculate

$$
\tilde{\gamma}^{0 \dagger}=\left(U^{\dagger} \gamma^{0} U\right)^{\dagger}=U^{\dagger} \gamma^{0 \dagger} U^{\dagger}=U^{\dagger} \gamma^{0} U
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Moreover, calculate

$$
\tilde{\gamma}^{0 \dagger}=\left(U^{\dagger} \gamma^{0} U\right)^{\dagger}=U^{\dagger} \gamma^{0 \dagger} U^{\dagger}=U^{\dagger} \gamma^{0} U=\tilde{\gamma}^{0}
$$

Dirac Matrices

Having found one representation of the Dirac matrices we can obtain any other representation by means of a unitary transformation.

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U, \quad \text { where } \quad U U^{\dagger}=U^{\dagger} U=\mathbb{I}
$$

Indeed, let us calculate

$$
\begin{aligned}
\left\{\tilde{\gamma}^{\mu}, \tilde{\gamma}^{\nu}\right\} & =\tilde{\gamma}^{\mu} \tilde{\gamma}^{\nu}+\tilde{\gamma}^{\nu} \tilde{\gamma}^{\mu}=U^{\dagger} \gamma^{\mu} U U^{\dagger} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} U U^{\dagger} \gamma^{\mu} U= \\
& =U^{\dagger} \gamma^{\mu} \gamma^{\nu} U+U^{\dagger} \gamma^{\nu} \gamma^{\mu} U=U^{\dagger}\left(\gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu}\right) U \\
& =U^{\dagger} 2 g^{\mu \nu} \mathbb{I} U=2 g^{\mu \nu} U^{\dagger} U=2 g^{\mu \nu} \mathbb{I} .
\end{aligned}
$$

Moreover, calculate

$$
\tilde{\gamma}^{0 \dagger}=\left(U^{\dagger} \gamma^{0} U\right)^{\dagger}=U^{\dagger} \gamma^{0 \dagger} U^{\dagger}=U^{\dagger} \gamma^{0} U=\tilde{\gamma}^{0}
$$

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{i \dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}
$$

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{i \dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}=U^{\dagger} \gamma^{i \dagger} U^{\dagger \dagger}
$$

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{i \dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}=U^{\dagger} \gamma^{i \dagger} U^{\dagger \dagger}=-U^{\dagger} \gamma^{i} U
$$

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{i \dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}=U^{\dagger} \gamma^{i \dagger} U^{\dagger}=-U^{\dagger} \gamma^{i} U=-\tilde{\gamma}^{i} .
$$

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{\dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}=U^{\dagger} \gamma^{i \dagger} U^{\dagger}=-U^{\dagger} \gamma^{i} U=-\tilde{\gamma}^{i}
$$

Thus we see that matrices $\tilde{\gamma}^{\mu}$ satisfy the same commutation relations and Hermiticity properties as the original matrices γ^{μ}.

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{i}{ }^{\dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}=U^{\dagger} \gamma^{i \dagger} U^{\dagger} \dagger=-U^{\dagger} \gamma^{i} U=-\tilde{\gamma}^{i}
$$

Thus we see that matrices $\tilde{\gamma}^{\mu}$ satisfy the same commutation relations and Hermiticity properties as the original matrices γ^{μ}. Let us note that, if the new $\gamma^{\mu \prime}$ s were defined by the similarity transform

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=S^{-1} \gamma^{\mu} S
$$

then the new matrices would not satisfy desired Hermiticity properties.

Dirac Matrices

Similarly

$$
\tilde{\gamma}^{i \dagger}=\left(U^{\dagger} \gamma^{i} U\right)^{\dagger}=U^{\dagger} \gamma^{i \dagger} U^{\dagger}=-U^{\dagger} \gamma^{i} U=-\tilde{\gamma}^{i}
$$

Thus we see that matrices $\tilde{\gamma}^{\mu}$ satisfy the same commutation relations and Hermiticity properties as the original matrices γ^{μ}. Let us note that, if the new $\gamma^{\mu \prime}$ s were defined by the similarity transform

$$
\gamma^{\mu} \rightarrow \tilde{\gamma}^{\mu}=S^{-1} \gamma^{\mu} S
$$

then the new matrices would not satisfy desired Hermiticity properties.

Dirac Matrices

The other commonly used representation of matrices γ^{μ} is the Weyl representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & l \\
l & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

where again $\sigma_{i}, i=1,2,3$, are the Pauli matrices.
Exercise. Find the unitary matrix that transforms $\gamma^{\mu \prime}$ s in the Dirac to the Weyl representation, $\gamma_{W}^{\mu}=U^{\dagger} \gamma_{D}^{\mu} U$.

Dirac Matrices

The other commonly used representation of matrices γ^{μ} is the Weyl representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & l \\
l & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

where again $\sigma_{i}, i=1,2,3$, are the Pauli matrices.
Exercise. Find the unitary matrix that transforms γ^{μ} 's in the Dirac to the Weyl representation, $\gamma_{W}^{\mu}=U^{\dagger} \gamma_{D}^{\mu} U$.
Answer. E.g.

Dirac Matrices

The other commonly used representation of matrices γ^{μ} is the Weyl representation:

$$
\gamma^{0}=\left(\begin{array}{cc}
0 & l \\
l & 0
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

where again $\sigma_{i}, i=1,2,3$, are the Pauli matrices.
Exercise. Find the unitary matrix that transforms γ^{μ} 's in the Dirac to the Weyl representation, $\gamma_{W}^{\mu}=U^{\dagger} \gamma_{D}^{\mu} U$.
Answer. E.g.

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}
I & I \\
-I & I
\end{array}\right), \quad \text { where } \quad I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Dirac Matrices and Dirac Equation

Exercise. Show that

$$
\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}
$$

As γ^{μ} 's are 4×4 matrices, the wave function of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

must have 4 components

Dirac Matrices and Dirac Equation

Exercise. Show that

$$
\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}
$$

As γ^{μ} 's are 4×4 matrices, the wave function of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

must have 4 components

Dirac Matrices and Dirac Equation

Exercise. Show that

$$
\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}
$$

As γ^{μ} 's are 4×4 matrices, the wave function of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

must have 4 components

$$
\psi(x)=\left(\begin{array}{l}
\psi_{1}(x) \\
\psi_{2}(x) \\
\psi_{3}(x) \\
\psi_{4}(x)
\end{array}\right)
$$

Dirac Equation

We will show that each component $\psi_{a}(x), a=1,2,3,4$, of the wave function $\psi(x)$ satisfies the Klein-Gordon equation.
To this end let us write down explicitly the matrix indices in the Dirac equation

$$
\left(i \gamma_{a b}^{\prime \prime} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad a=1,2,3,4 .
$$

Dirac Equation

We will show that each component $\psi_{a}(x), a=1,2,3,4$, of the wave function $\psi(x)$ satisfies the Klein-Gordon equation.
To this end let us write down explicitly the matrix indices in the Dirac equation

$$
\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad a=1,2,3,4 .
$$

Let us act on both sides of this equation with the operator ($i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}$), than we obtain

Dirac Equation

We will show that each component $\psi_{a}(x), a=1,2,3,4$, of the wave function $\psi(x)$ satisfies the Klein-Gordon equation.
To this end let us write down explicitly the matrix indices in the Dirac equation

$$
\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad a=1,2,3,4 .
$$

Let us act on both sides of this equation with the operator $\left(i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}\right)$, than we obtain

$$
\left(i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}\right)\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad c=1,2,3,4,
$$

Dirac Equation

We will show that each component $\psi_{a}(x), a=1,2,3,4$, of the wave function $\psi(x)$ satisfies the Klein-Gordon equation.
To this end let us write down explicitly the matrix indices in the Dirac equation

$$
\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad a=1,2,3,4 .
$$

Let us act on both sides of this equation with the operator $\left(i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}\right)$, than we obtain

$$
\left(i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}\right)\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad c=1,2,3,4
$$

and, after performing the multiplication, we get

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0 .
$$

Dirac Equation

We will show that each component $\psi_{a}(x), a=1,2,3,4$, of the wave function $\psi(x)$ satisfies the Klein-Gordon equation.
To this end let us write down explicitly the matrix indices in the Dirac equation

$$
\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad a=1,2,3,4
$$

Let us act on both sides of this equation with the operator $\left(i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}\right)$, than we obtain

$$
\left(i \gamma_{c a}^{\nu} \partial_{\nu}+m \delta_{c a}\right)\left(i \gamma_{a b}^{\mu} \partial_{\mu}-m \delta_{a b}\right) \psi_{b}(x)=0, \quad c=1,2,3,4,
$$

and, after performing the multiplication, we get

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0 .
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form
$\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}=\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form
$\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}=\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}=\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\begin{aligned}
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu} & =\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =\frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}
\end{aligned}
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\begin{aligned}
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu} & =\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =\frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left(2 g^{\mu \nu} \mathbb{I}\right)_{c b} \partial_{\mu} \partial_{\nu}
\end{aligned}
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\begin{aligned}
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu} & =\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =\frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left(2 g^{\mu \nu} \mathbb{I}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =g^{\mu \nu} \delta_{c b} \partial_{\mu} \partial_{\nu}=
\end{aligned}
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\begin{aligned}
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu} & =\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =\frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left(2 g^{\mu \nu} \mathbb{I}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =g^{\mu \nu} \delta_{c b} \partial_{\mu} \partial_{\nu}=\delta_{c b} \partial_{\mu} \partial^{\mu}
\end{aligned}
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\begin{aligned}
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu} & =\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =\frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left(2 g^{\mu \nu} \mathbb{I}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =g^{\mu \nu} \delta_{c b} \partial_{\mu} \partial_{\nu}=\delta_{c b} \partial_{\mu} \partial^{\mu}=\delta_{c b} \square
\end{aligned}
$$

Dirac Equation

The second and third term in parentheses cancel each other

$$
\left(-\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}-i m \gamma_{c b}^{\nu} \partial_{\nu}+i m \gamma_{c b}^{\mu} \partial_{\mu}-m^{2} \delta_{c b}\right) \psi_{b}(x)=0,
$$

hence, after dividing by (-1), we get

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

The first term in parentheses has the form

$$
\begin{aligned}
\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu} & =\left(\gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}=\left(\frac{1}{2} \gamma^{\nu} \gamma^{\mu}\right)_{c b} \partial_{\nu} \partial_{\mu}+\left(\frac{1}{2} \gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =\frac{1}{2}\left(\gamma^{\nu} \gamma^{\mu}+\gamma^{\mu} \gamma^{\nu}\right)_{c b} \partial_{\mu} \partial_{\nu}=\frac{1}{2}\left(2 g^{\mu \nu} \mathbb{I}\right)_{c b} \partial_{\mu} \partial_{\nu} \\
& =g^{\mu \nu} \delta_{c b} \partial_{\mu} \partial_{\nu}=\delta_{c b} \partial_{\mu} \partial^{\mu}=\delta_{c b} \square
\end{aligned}
$$

Dirac Equation

Inserting this result into the equation

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

we get

$$
\left(\delta_{c b} \square+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

and, after summing up over b, we get

Dirac Equation

Inserting this result into the equation

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

we get

$$
\left(\delta_{c b} \square+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

and, after summing up over b, we get

$$
\left(\square+m^{2}\right) \psi_{c}(x)=0, \quad c=1,2,3,4 .
$$

Dirac Equation

Inserting this result into the equation

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

we get

$$
\left(\delta_{c b} \square+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

and, after summing up over b, we get

$$
\left(\square+m^{2}\right) \psi_{c}(x)=0, \quad c=1,2,3,4 .
$$

This means that solutions of the Dirac equation satisfy the relationship

$$
E^{2}-\vec{p}^{2}=m^{2} \Rightarrow E^{2}=\vec{p}^{2}+m^{2},
$$

Dirac Equation

Inserting this result into the equation

$$
\left(\gamma_{c a}^{\nu} \gamma_{a b}^{\mu} \partial_{\nu} \partial_{\mu}+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

we get

$$
\left(\delta_{c b} \square+m^{2} \delta_{c b}\right) \psi_{b}(x)=0
$$

and, after summing up over b, we get

$$
\left(\square+m^{2}\right) \psi_{c}(x)=0, \quad c=1,2,3,4
$$

This means that solutions of the Dirac equation satisfy the relationship

$$
E^{2}-\vec{p}^{2}=m^{2} \Rightarrow E^{2}=\vec{p}^{2}+m^{2}
$$

Dirac Equation

hence their energy can be either positive or negative

$$
E= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

Existence of the negative energy solutions caused some anxiety in the beginning, but then it occurred that they just represent antiparticles of positive energy $E=\sqrt{\vec{p}^{2}+m^{2}}$ which propagate opposite to the time flow.

Dirac Equation

hence their energy can be either positive or negative

$$
E= \pm \sqrt{\vec{p}^{2}+m^{2}}
$$

Existence of the negative energy solutions caused some anxiety in the beginning, but then it occurred that they just represent antiparticles of positive energy $E=\sqrt{\vec{p}^{2}+m^{2}}$ which propagate opposite to the time flow.

Conjugate Dirac Equation

Let us take the Hermitian conjugate of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

then we obtain

$$
\psi^{\dagger}(x)\left(-i \gamma^{\mu \dagger} \overleftarrow{\partial}_{\mu}-m\right)=0
$$

where an arrow above the derivative means that it acts to the left and not to the right, as usual.

Conjugate Dirac Equation

Let us take the Hermitian conjugate of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

then we obtain

$$
\psi^{\dagger}(x)\left(-i \gamma^{\mu \dagger} \overleftarrow{\partial}_{\mu}-m\right)=0
$$

where an arrow above the derivative means that it acts to the left and not to the right, as usual.
Let us use the relationship $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and divide both sides of this equation by (-1)

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

Conjugate Dirac Equation

Let us take the Hermitian conjugate of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

then we obtain

$$
\psi^{\dagger}(x)\left(-i \gamma^{\mu \dagger} \overleftarrow{\partial}_{\mu}-m\right)=0
$$

where an arrow above the derivative means that it acts to the left and not to the right, as usual.
Let us use the relationship $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and divide both sides of this equation by (-1)

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

Conjugate Dirac Equation

Let us take the Hermitian conjugate of the Dirac equation

$$
\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

then we obtain

$$
\psi^{\dagger}(x)\left(-i \gamma^{\mu \dagger} \overleftarrow{\partial}_{\mu}-m\right)=0
$$

where an arrow above the derivative means that it acts to the left and not to the right, as usual.
Let us use the relationship $\gamma^{\mu \dagger}=\gamma^{0} \gamma^{\mu} \gamma^{0}$ and divide both sides of this equation by (-1)

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

Conjugate Dirac Equation

Note that $\gamma^{0^{2}}=\mathbb{I}$, thus

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m \gamma^{0} \gamma^{0}\right)=0
$$

which we can rewrite in the following way

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right) \gamma^{0}=0
$$

Conjugate Dirac Equation

Note that $\gamma^{0^{2}}=\mathbb{I}$, thus

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m \gamma^{0} \gamma^{0}\right)=0
$$

which we can rewrite in the following way

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right) \gamma^{0}=0
$$

let us multiply this equation by γ^{0} from the right

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

and define the Dirac conjugate wave function by

Conjugate Dirac Equation

Note that $\gamma^{0^{2}}=\mathbb{I}$, thus

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m \gamma^{0} \gamma^{0}\right)=0
$$

which we can rewrite in the following way

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right) \gamma^{0}=0
$$

let us multiply this equation by γ^{0} from the right

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

and define the Dirac conjugate wave function by

$$
\bar{\psi}(x) \equiv \psi^{\dagger}(x) \gamma^{0},
$$

Conjugate Dirac Equation

Note that $\gamma^{0^{2}}=\mathbb{I}$, thus

$$
\psi^{\dagger}(x)\left(i \gamma^{0} \gamma^{\mu} \gamma^{0} \overleftarrow{\partial}_{\mu}+m \gamma^{0} \gamma^{0}\right)=0
$$

which we can rewrite in the following way

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right) \gamma^{0}=0
$$

let us multiply this equation by γ^{0} from the right

$$
\psi^{\dagger}(x) \gamma^{0}\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

and define the Dirac conjugate wave function by

$$
\bar{\psi}(x) \equiv \psi^{\dagger}(x) \gamma^{0}
$$

Conjugate Dirac Equation

then the conjugate Dirac equation takes the form

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

To avoid the assumption that the derivative acts to the left we could write the equation in the following form

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu}+m \bar{\psi}(x)=0 .
$$

Conjugate Dirac Equation

then the conjugate Dirac equation takes the form

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

To avoid the assumption that the derivative acts to the left we could write the equation in the following form

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu}+m \bar{\psi}(x)=0
$$

Multiplying it with $\psi(x)$ from the right we obtain the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

Conjugate Dirac Equation

then the conjugate Dirac equation takes the form

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

To avoid the assumption that the derivative acts to the left we could write the equation in the following form

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu}+m \bar{\psi}(x)=0
$$

Multiplying it with $\psi(x)$ from the right we obtain the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

where the derivative acts only on $\bar{\psi}(x)$.

Conjugate Dirac Equation

then the conjugate Dirac equation takes the form

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \overleftarrow{\partial}_{\mu}+m\right)=0
$$

To avoid the assumption that the derivative acts to the left we could write the equation in the following form

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu}+m \bar{\psi}(x)=0
$$

Multiplying it with $\psi(x)$ from the right we obtain the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

where the derivative acts only on $\bar{\psi}(x)$.

Dirac Current

Multiplying the Dirac equation from the left by $\bar{\psi}(x)$ we get

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0
$$

Now let us add both sides of this equation to the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

Dirac Current

Multiplying the Dirac equation from the left by $\bar{\psi}(x)$ we get

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 .
$$

Now let us add both sides of this equation to the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

then we get
$i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)+i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0$.

Dirac Current

Multiplying the Dirac equation from the left by $\bar{\psi}(x)$ we get

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 .
$$

Now let us add both sides of this equation to the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

then we get
$i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)+i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0$.
The terms containing mass cancel and we end up with the equation

$$
i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)=0
$$

Dirac Current

Multiplying the Dirac equation from the left by $\bar{\psi}(x)$ we get

$$
\bar{\psi}(x)\left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi(x)=0 .
$$

Now let us add both sides of this equation to the equation

$$
i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0
$$

then we get
$i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)-m \bar{\psi}(x) \psi(x)+i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)+m \bar{\psi}(x) \psi(x)=0$.
The terms containing mass cancel and we end up with the equation

$$
i \bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+i \partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)=0
$$

Dirac Current

If we divide both sides of it by i we get

$$
\bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+\partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)=0
$$

Now, if we use the product rule, we get

$$
\partial_{\mu}\left(\bar{\psi}(x) \gamma^{\mu} \psi(x)\right)=\partial_{\mu} j^{\mu}(x)=0
$$

Dirac Current

If we divide both sides of it by i we get

$$
\bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+\partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)=0
$$

Now, if we use the product rule, we get

$$
\partial_{\mu}\left(\bar{\psi}(x) \gamma^{\mu} \psi(x)\right)=\partial_{\mu} j^{\mu}(x)=0
$$

where we have defined the Dirac current

$$
j^{\mu}(x) \equiv \bar{\psi}(x) \gamma^{\mu} \psi(x) \equiv(\rho(x), \vec{j}(x))
$$

Dirac Current

If we divide both sides of it by i we get

$$
\bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+\partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)=0
$$

Now, if we use the product rule, we get

$$
\partial_{\mu}\left(\bar{\psi}(x) \gamma^{\mu} \psi(x)\right)=\partial_{\mu} j^{\mu}(x)=0
$$

where we have defined the Dirac current

$$
j^{\mu}(x) \equiv \bar{\psi}(x) \gamma^{\mu} \psi(x) \equiv(\rho(x), \vec{j}(x))
$$

which obviously satisfies the continuity equation.

Dirac Current

If we divide both sides of it by i we get

$$
\bar{\psi}(x) \gamma^{\mu} \partial_{\mu} \psi(x)+\partial_{\mu} \bar{\psi}(x) \gamma^{\mu} \psi(x)=0
$$

Now, if we use the product rule, we get

$$
\partial_{\mu}\left(\bar{\psi}(x) \gamma^{\mu} \psi(x)\right)=\partial_{\mu} j^{\mu}(x)=0
$$

where we have defined the Dirac current

$$
j^{\mu}(x) \equiv \bar{\psi}(x) \gamma^{\mu} \psi(x) \equiv(\rho(x), \vec{j}(x))
$$

which obviously satisfies the continuity equation.

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi
$$

$$
=\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
\begin{aligned}
j^{0} & =\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi \\
& =\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}+\psi_{3}^{*} \psi_{3}+\psi_{4}^{*} \psi_{4}
\end{aligned}
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
\begin{aligned}
j^{0} & =\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi \\
& =\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}+\psi_{3}^{*} \psi_{3}+\psi_{4}^{*} \psi_{4}
\end{aligned}
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
\begin{aligned}
j^{0} & =\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi \\
& =\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}+\psi_{3}^{*} \psi_{3}+\psi_{4}^{*} \psi_{4} \\
& =\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2}+\left|\psi_{4}\right|^{2}
\end{aligned}
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
\begin{aligned}
j^{0} & =\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi \\
& =\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}+\psi_{3}^{*} \psi_{3}+\psi_{4}^{*} \psi_{4} \\
& =\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2}+\left|\psi_{4}\right|^{2}=\rho \geqslant 0
\end{aligned}
$$

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
\begin{aligned}
j^{0} & =\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi \\
& =\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}+\psi_{3}^{*} \psi_{3}+\psi_{4}^{*} \psi_{4} \\
& =\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2}+\left|\psi_{4}\right|^{2}=\rho \geqslant 0
\end{aligned}
$$

Thus, we see that the zeroth component of the Dirac current can be interpreted as the probability density ρ of finding a particle in the spatial volume element $\mathrm{d}^{3} x$ at time t.

Dirac Current

Let us calculate the zeroth component of the Dirac current

$$
\begin{aligned}
j^{0} & =\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \gamma^{0} \gamma^{0} \psi=\psi^{\dagger} \psi \\
& =\left(\psi_{1}^{*}, \psi_{2}^{*}, \psi_{3}^{*}, \psi_{4}^{*}\right)\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)=\psi_{1}^{*} \psi_{1}+\psi_{2}^{*} \psi_{2}+\psi_{3}^{*} \psi_{3}+\psi_{4}^{*} \psi_{4} \\
& =\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2}+\left|\psi_{4}\right|^{2}=\rho \geqslant 0
\end{aligned}
$$

Thus, we see that the zeroth component of the Dirac current can be interpreted as the probability density ρ of finding a particle in the spatial volume element $\mathrm{d}^{3} x$ at time t.

