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parameterizations have been written and calls to them implemented in the code generation part of 
the program. This allows to better control numerical stability of the Monte Carlo programs generated, 
in particular for reactions with a virtual photon or gluon exchange in the t-channel. A new option 
of generating s-channel kinematics has been added which takes into account peaks due to Feynman 
propagators of intermediate bosons which decay into on shell final state particles, or of the top quark. 
It speeds up both the compilation and execution time of the Monte Carlo programs with respect to 
the kinematics based on topologies of the Feynman diagrams used in versions 2 and 3 of carlomat. 
To further speed up the execution time, the main routine of the Monte Carlo program has been 
supplemented with the Message Passing Interface which allows to run the program parallelly on several 
processors.
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which decay into on shell final state particles, or of the top quark. It speeds up both the compilation and 
execution time of the Monte Carlo programs with respect to the kinematics based on topologies of the 
Feynman diagrams used in versions 2 and 3 of the program. To further speed up the execution time, the 
main routine of the Monte Carlo program has been supplemented with the Message Passing Interface in 
order to allow for a parallel run of the program on several processors.
Nature of problem: Automatic generation of the MC codes for a wide class of reactions that can be 
measured in current and future accelerators.
Solution method: The Fortran 90/95 MC programs are generated with a meta program that is also 
written in Fortran 90/95. All amenities of the former versions of carlomat are kept in the current 
version, too.
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1. Introduction

High energy particle colliders, a prominent example of which is the LHC, but also new colliders, whose projects have become more and 
more mature recently, as the electron–positron option of the Future Circular Collider (FCC–ee) [1] and Compact Linear Collider (CLIC) [2]
at CERN, the International Linear Collider (ILC) [3] in Japan, or the Circular Electron–Positron Collider (CEPC) [4] in China, offer a unique 
possibility to test the nonabelian nature of gauge symmetry of the theory of fundamental interactions and mechanisms of the symmetry 
braking. These features of the theory can be directly tested in reactions in which a few heavy particles, as e.g. electroweak gauge bosons, 
heavy scalars or top quarks are produced at a time. The heavy particles are usually unstable and decay immediately leading to multi 
particle final states. The latter become also more and more relevant in the e+e− machines operating at low centre of mass energies. If 
one wants to determine hadronic contributions to vacuum polarization through dispersion relations from the energy dependence of the 
ratio of the cross section of e+e− → hadrons to the cross section of e+e− → μ+μ− with high precision then, in addition to the leading 
two pion production, the hadronic channels with several particles must be taken into account, too. Reliable theoretical predictions for 
aforementioned multi particle reactions can be obtained only within a fully automated approach, by using any of the following general 
purpose packages for Monte Carlo (MC) simulations: MadGraph/MadEvent/HELAS [5], CompHEP/CalcHEP [6], ALPGEN [7], HELAC-
PHEGAS [8], SHERPA/Comix [9], O’Mega/Whizard [10], or carlomat [11], [12], [13]. Some packages, as FeynArts/FormCalc
[14], GRACE [15], MadGraph5_aMC@NLO [16], SHERPA 2.2 [17] and HELAC-NLO [18], offer a possibility of calculating NLO EW or 
QCD corrections.

carlomat [11] is a computer program written in Fortran 90/95 dedicated to automatic computation of the leading order (LO) cross 
sections of multiparticle reactions in the framework of the Standard Model and some effective models using diagrammatic approach.
carlomat_2.0 [12] has built-in interfaces to parton density functions. It generates a single phase space parameterization for the Feyn-
man diagrams of the same topology, which substantially reduces size of the multi channel MC phase space integration routine with 
respect to the first version, where a different phase parameterization was generated for every Feynman diagram. It also includes the 
Cabibbo-Kobayashi-Maskawa mixing in the quark sector and some effective models such as scalar electrodynamics, the W tb interaction 
with operators of dimension up to 5 and a general top–higgs coupling and some improvements concerning the colour matrix computa-
tion. carlomat_3.0 [13] is dedicated to description of the processes of electron-positron annihilation to hadrons at low centre of mass 
energies. Version 3.1 offers a possibility of taking into account either the initial or final state radiation separately, or both at a time. It also 
allows to include the electromagnetic charged pion form factor for processes with charged pion pairs. All former versions of carlomat, 
as well as the current one, can be used as the MC generator of unweighted events.

Performing the phase space integration for such multiparticle reactions in an efficient way is a challenge indeed. In carlomat [11], 
this problem is tackled with the multichannel Monte Carlo (MC) integration routine generated automatically for a considered reaction. It 
combines phase space parameterizations corresponding to different topologies of the Feynman diagrams of the reaction, which take into 
account mappings of peaks related to the exchange of massless or massive unstable particles in the s-channel. However, parameterizations 
which map away the t-channel poles, or peaks due to soft and collinear photon or gluon emission, have not been included in the code 
generation routines of carlomat until now. As it will be clarified in the next section, in some phase space regions, the corresponding 
mappings require quadruple precision versions of routines for computation of the phase-space parameterizations and helicity amplitudes.

The paper is organized in the following way. In Section 2, the way in which the multichannel MC phase-space integration routine has 
been generated in former versions of carlomat is recalled. Newly implemented phase space parameterizations and related problems are 
discussed in Section 3, where also usage of the new program options is explained and sample results are presented. The summary and 
some remarks concerning the program distribution and preparation for running are given in Section 4.

2. Phase-space integration in carlomat

The phase-space integration element of reaction of the form

1 + 2 → 3 + 4 + ... + n (1)

is parameterized in the standard way
2
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d3nf−4Lips = (2π)4δ(4)
(

p1 + p2 −
n∑

i=3

pi

) n∏
i=3

d3 pi

(2π)32Ei
, (2)

with nf = n − 2 being the number of particles in the final state of (1). The basic idea behind the code generation for both the matrix 
element and phase space computation utilized in carlomat is to divide the final state particles {3,4, . . . ,n} in two subsets, in accordance 
with a topology, or it would be better to say, shape of the Feynman diagram of the reaction. Let us denote the four momentum of the 
first subset by qi1 and that of the second subset qi2 and use consecutively the following identity∫

dsi

∫
d3qi

2Ei
δ(4)

(
qi − qi1 − qi2

) = 1, where E2
i = si + �q 2

i , (3)

until Eq. (2) is brought into the following form:

d3nf−4Lips = (2π)4−3nf d2l0d2l1...d
2ln−4ds1ds2...dsn−4. (4)

In Eq. (4), s0 = (
q01 + q02

)2 = (p1 + p2)
2 = s and si , i = 1, ..., n −4, are Lorentz invariants defined as si = (

qi1 + qi2

)2
, and d2li are 2-particle 

phase-space elements given by

d2li = |�qi1 |
4
√

si
d�i, i = 0,1, ...,n − 4, (5)

where d�i is the solid angle element of momentum �qi1 in the relative centre-of-mass system (c.m.s.), �qi1 + �qi2 = �0.
Invariants si of Eq. (4) are generated randomly, either according to the uniform distribution, or if necessary, mappings of the Breit-

Wigner shape of the Feynman propagators of unstable particles and ∼ 1/s behaviour of the propagators of massless particles are 
performed. The physical limits of si ’s are automatically deduced from a topology of the Feynman diagram. An option is included in 
the program that allows to turn on the mapping if the particle decays into 2, 3, 4, ... on-shell particles. Different phase-space parameteri-
zations obtained in this way can be used for testing purposes. It is obvious that only peaks related to the s-channel Feynman propagators 
can be mapped out in this way.

Denote a single phase-space parameterization generated according to Eq. (4) by Lipsa (x), where x = (x1, ..., x3nf−4), with xi being ran-
dom arguments, xi ∈ [0, 1]. The random numbers x are used to calculate the collection of the final state particle four momenta {p3, . . . pn}. 
Therefore, parameterization Lipsa (x) will be referred to later on as the kinematic channel. Obviously, each phase space parameterization 
Lipsa (x) can be treated as a probability density function which satisfies the following normalization condition

1∫
0

d3nf−4x Lipsa(x) = vol(Lips). (6)

All the parameterizations Lipsa(x), a = 1, . . . , N , generated by the program for a considered reaction are then automatically combined into 
a single multichannel probability density function

Lips(x) =
N∑

a=1

waLipsa(x), (7)

with non-negative weights wa , a = 1, ..., N , satisfying the condition

N∑
a=1

wa = 1 ⇔
1∫

0

d3nf−4x Lips(x) = vol(Lips). (8)

The actual MC integration is performed with the random numbers generated according to the probability density function Lips(x) of 
Eq. (7).

The MC integration in carlomat is performed iteratively. In the first step, the integral is scanned with a rather small number of 
random calls to the integrand, i.e. it is calculated N times, each time with a different phase-space parameterization Lipsa(x), resulting in 
the cross section σ (0)

a . Weights w(1)
a of Eq. (7) for the first actual iteration are calculated according to the formula:

w(1)
a = σ

(0)
a

1
N

N∑
b=1

σ
(0)

b

. (9)

The weights w(i+1)
a for the i + 1 iteration are then calculated according to the following formula:

w(i+1)
a = σ

(i)
a

N∑
b=1

w(i)
b σ

(i)
b

. (10)

This means that kinematic channels with small weights w(i)
a are chosen with low probability and will have small, or maybe even zero 

weights in all subsequent iterations. Weights w(i)
a are substituted to the multichannel probability density function (7) with which the 
3
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result of i-th iteration and the corresponding standard deviation are �σ(i) are computed. The accumulated result for the cross section σac

and standard deviation �σac after niter iterations is calculated according to the following formula

σac =

niter∑
i=1

σ (i)
(

σ (i)

�σ (i)

)2

niter∑
i=1

(
σ (i)

�σ (i)

)2
, �σac =

niter∑
i=1

σ (i) 2

niter

niter∑
i=1

(
σ (i)

�σ (i)

)2
, (11)

which favours contributions from iterations with smaller variance. The accumulated result can be compared against the arithmetic mean 
value calculated as

σamv = 1

niter

niter∑
i=1

σ (i), �σamv =
[

1

niter(niter − 1)

niter∑
i=1

(�σ (i))2

] 1
2

. (12)

If both results, σac of (11) and σamv of (12), differ by less than one standard deviation, then the user can be satisfied with the result of 
integration. However, bigger discrepancies between the two results should be considered as a warning that something might be wrong 
with the integration procedure, in particular if one or a few results of individual iterations are much different from the average.

3. New developments in carlomat

As already mentioned in Section 2, the phase space parameterizations of Eq. (4), automatically generated and included in the multi-
channel probability density function of Eq. (7) by all former versions of carlomat, are efficient in practice only for calculation of cross 
sections of reactions with s-channel peaks in their amplitudes. In this section, we describe parameterizations which map away peaks 
caused by the t-channel Feynman propagators, or soft and collinear photon/gluon emission from the initial- or final-state particles. They 
are also automatically included, together with the s-channel parameterizations, in the probability density function of Eq. (7), which should 
substantially facilitate the phase space integration for reactions involving such peaks. We also present a new way of generating kinematics 
responsible for mapping out the s-channel peaks which speeds up both the compilation and computation of the MC programs.

3.1. t-channel singularity

Reactions of the form:

e+(p1) + e−(p2) → e+(p3) + e−(p4) + 5 + ... + n, (13)

are typical in e+e− colliders. They receive contributions, among others, from the Feynman diagrams of the form depicted in Fig. 1, which 
possibly contain two t-channel peaks. In order to map out the singularity, the phase-space integration element of (13) is written in the 
following way:

d3nf−4Lips = (2π)4−3nf ds′dP S3(s,m2
3,m2

4, s′)dP Snf−2(s′,m2
5, ...,m2

n), (14)

where identity (3) has been used and

dP S3(s,m2
3,m2

4, s′) = δ(4)
(

p1 + p2 − p3 − p4 − p′)dp3
3

2E3

dp3
4

2E4

dp′3

2E ′ , (15)

dP Snf−2(s′,m2
5, ...,m2

n) = δ(4)
(

p′ −
n∑

i=5

pi

) n∏
i=5

dp3
i

2Ei
, (16)

are 3- and (nf − 2)-particle phase-space elements, respectively, as defined by Eq. (2), with the corresponding powers of (2π) in Eqs. (15)

and (16) included in the common factor on the right hand side of Eq. (14) and in Eq. (15), E ′ =
√

s′ + �p ′ 2.
The t-channel singularity can be mapped out by writing the 3-particle phase-space element of Eq. (15) in the following form

dP S3(s,m2
3,m2

4, s′) = 1

8
δ(

√
s − E3 − E4 − E ′) |�p3||�p4|

E ′ dE3dE4d�3d�4, (17)

where E ′ = √
s′ + (�p3 + �p4)2 and all kinematic variables on the r.h.s. are define in c.m.s. Introducing dimensionless variables x = 2E3/

√
s

and y = 2E4/
√

s, Eq. (17) can be written in the following way [19]:

dP S3(s,m2
3,m2

4, s′) = 1

8

|�p3||�p4|
2 − x + y |�p3|

|�p4| cos θ34

dx [δ(y − y+) + δ(y − y−)] dyd�3d�4, (18)

where d�i = d cos θidϕi , i = 3, 4, are the solid angle elements of momenta �p3 and �p4 of particles 3 and 4 and

cos θ34 = cos θ3 cos θ4 + sin θ3 sin θ4 cos(ϕ3 − ϕ4). (19)

In Eq. (18), y± are the solutions, possibly 2, of the energy conservation equation, as defined by zero of the Dirac delta of Eq. (17)
4
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Fig. 1. Feynman diagram of reaction (13) containing double t-channel singularity.

√
s − E3 − E4 − E ′ = √

s −
√

s

2
x −

√
s

2
y (20)

−
[

s′ + s

4
x2 − m2

3 + s

4
y2 − m2

4 + 2

√
s

4
x2 − m2

3

√
s

4
y2 − m2

4 cos θ34

]1/2

= 0.

The random variables of Eqs. (14) and (18) are generated in a similar way as in [20], with some minor modifications, i.e.

• s′ is generated according to ∼ 1/s′ distribution.
• x is generated according to ∼ 1/(1 − x) distribution.
• Azimuthal angles ϕ3 and ϕ4 are generated according to the uniform distribution.
• cos θ3 ∈ [− cos θcut, cos θcut] is generated according to

∼ 1

1 − β3 cos θ3
, with β3 = 2| �p1|| �p3|

2E1 E3 − m2
3

. (21)

• cos θ4 ∈ [− cos θcut, cos θcut] is generated according to

∼ 1

a4 + cos θ4
, where a4 = 2E2 Ẽ4 − m2

4

2| �p2|
√

Ẽ2
4 − m2

4

(22)

and Ẽ4, its choice being explained below, is used in a4 instead of energy E4 of particle 4.
• The (nf − 2)-particle phase-space element of Eq. (16) is generated in a way similar to the s-channel phase-space generation of
carlomat.

The energy E4 of particle 4 is not known until cos θ4 has been generated and cos θ34, which is needed in Eq. (20), calculated according 
to Eq. (19). Therefore, in Eq. (22), Ẽ4 is used instead of E4. It is chosen as the solution of Eq. (20) for cos θ34 = −1, which corresponds to 
the collinear singularity being most pronounced. Then cos θ34 is calculated according to Eq. (19) and substituted to Eq. (20). If there is no 
solution for y, then d3nf−4Lips of Eq. (14) is set to 0. If two solutions y± exist, then one of them is chosen randomly and the phase-space 
d3nf−4Lips is multiplied by a factor 2.

3.2. Photon or gluon emission

Consider the reaction of the photon or gluon radiation of the following form:

1 + 2 → 3 + 4 + ... + n + γ , (23)

with the number of final state particles nf given by nf = n + 1 − 2 = n − 1. In order to map out soft and collinear singularities of the initial 
state radiation amplitudes, we parameterize the phase-space element of (23) in the following way

d3nf−4Lips = 1

2
(2π)4−3nf Eγ dEγ d�γ dP Snf−1(s′,m2

3, ...,m2
n), (24)

where Eγ and d�γ = d cos θγ dϕγ are the energy and solid angle element of the photon in the c.m.s., respectively, dP Snf−1(s′, m2
3, ..., m

2
n)

is defined according to Eq. (16), with an obvious change of notation, and after emission of the photon of four momentum pγ from the 
initial state particle, the reduced c.m.s. energy squared is given by s′ = (p1 + p2 − pγ )2 = s − 2

√
sEγ .

The random variables of Eq. (24) are generated in the following way:

• Eγ is generated according to ∼ 1/Eγ distribution with the minimum photon energy Ecut
γ .

• cos θγ ∈ [− cos θ cut
γ , cos θ cut

γ ] is generated according to

∼ 1

1 − β2 cos2 θγ
, with β =

√
1 − 4m2

s
,

where equal masses of the initial state particles, m1 = m2 = m, have been assumed for the sake of simplicity.
• ϕγ is generated according to a uniform distribution.
• dP Snf−1(s′, m2

3, ..., m
2
n) is generated in a way that takes into account peaks due to the s-channel Feynman propagators, as described 

by Eq. (4) and in a paragraph just below it.
5
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Soft and collinear singularities of amplitudes of the final state radiation from either particle 3 or 4 of reaction (23) are treated with the 
following phase-space element parameterization

d3nf−4Lips = (2π)4−3nf ds′ds′′dP S2(s, s′, s′′)

× dP S3(s′,m2
3,m2

4,0) dP Snf−3(s′′,m2
5, ...,m2

n), (25)

where s′ = (p3 + p4 + pγ )2, s′′ = (p5 + ... + pn)2 and the 2-, 3- and (nf − 3)-particle phase-space elements are defined appropriately 
according to Eq. (16). The 3-particle phase-space element on the r.h.s. of Eq. (25), corresponding to the photon radiation off particle 4, is 
parameterized by

dP S3(s′,m2
3,m2

4,0) = 1

8
dEγ dE3d cos θ3dϕ3dϕ37, (26)

where the random variables are generated in the same way as in a program ee4fγ [21], i.e.

• Eγ is generated according to ∼ 1/Eγ , with the minimum photon energy Ecut
γ boosted to the c.m.s. of particles 3, 4 and γ .

• E3 is generated according to

∼ 1

c3 − E3
∼ 1

p4 · pγ
.

• cos θ3, ϕ3 and ϕ37 are generated according to the uniform distribution.

3.3. Quadruple precision

Parameterizations (14), (24) and (25), which map away peaks due to the t-channel Feynman propagators, or soft and collinear photon 
or gluon emission from the initial- or final-state particles, may lead to numerical instabilities. The latter may occur in particular at high 
energies and small angles and their potential sources are the following. The final-state four momenta p1, ..., pf of reactions (1), (13) or 
(23), generated randomly according to the probability density function Lipsb(x), must be used to calculate the normalization factors of all 
other densities Lipsa(x), a = 1, ..., N , of Eq. (7) in order to obtain proper phase-space normalization. To do so for any a 	= b, the necessary 
random variables x = (x1, ..., x3nf−4) must be recalculated from the already generated four momenta p1, ..., pf . Obviously, this can also be 
done for a = b and the value of Lipsb(x) obtained by this inversion can be compared to the original one with which the four momenta 
have been generated. Eventual discrepancies are recorded in the program output. Generation of cos θ3 and cos θ4 according to distributions 
(21) and (22), respectively, for reactions involving the t-channel poles may also become numerically unstable.

These problems can be circumvented either by expanding the appropriate formulae in relevant phase space regions into the Taylor 
series, cancelling leading terms analytically and performing computation with the double precision (DP) arithmetics, or by the use of 
quadruple precision (QP) arithmetics. In the new version of carlomat, both approaches are used, which gives a possibility of comparing 
the corresponding cross sections computed with the DP and QP precision arithmetics. The use of QP requires new versions of all routines 
for calculating both kinematics and the helicity amplitudes, which have been written and tested. However, it should be noted at this point 
that the corresponding MC programs in QP are much slower, typically by more than a factor 50, than those in the DP. Therefore, the QP 
arithmetics should be used rather to test if the corresponding DP code is good enough and not as an actual tool for the MC simulations. 
If a variable is close to a verge of it physical range then limited precision of the DP arithmetics may drive it out of the range and thus 
give a wrong result either for the phase space normalization or the matrix element. A number of criteria have been implemented in the 
program which set the phase normalization to zero in such cases. This means that such events do not terminate the program, but just do 
not contribute to the result. Whenever a random event is rejected a record of it is kept in the program output.

3.4. New s-channel integration routine

The multi channel MC integration routine automatically generated by versions 2 and 3 of carlomat combined the phase space 
parameterizations corresponding to different topologies and propagators of the Feynman diagrams. The number of such parameterizations 
may be very large for multiparicle reactions. Quite some care has been taken to combine those parameterizations in the integration routine 
in a way that makes its compilation at all possible. However, the corresponding compilation and execution time may become quite long.

The current version of the program offers a possibility of generating s-channel kinematics by taking into account peaks due to Feynman 
propagators of intermediate bosons which decay into on shell final state particles, or of the top quark. The corresponding kinematical 
routine is much shorter which speeds up both the compilation and execution time of the MC programs generated by carlomat. To this 
end a number of new subroutines have been written to compute the phase space normalization and generate the final state particle four 
momenta for reactions with 4, 5,..., 9 particles in the final state and calls to them have been generated in the code generation part of the 
program.

3.5. Parallelization of the MC program computation

To further speed up the execution time of the MC programs automatically generated by carlomat, the main routine of the MC 
computation part of the program carlocom.f has been supplemented with the Message Passing Interface (MPI) in order to allow for a 
parallel run of the program on several processors at a time. The corresponding new routine is named carlocom_mpi.f. With the use 
of MPI, the elapsed time of the MC program execution can be substantially shortened, i.e. in practice divided by the number of processor 
cores used. This scaling, however, is not ideal. How it actually works will be addressed in more detail in Section 3.7.
6
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Table 1
LO cross sections of reaction (27) at √s = 200 GeV and √s = 500 GeV for 3 dif-
ferent ranges of the lepton–beam angle, computed with double and quadruple 
precision arithmetics. Uncertainties of the last digits are given in parentheses.

σ(200 GeV) σQP(200 GeV) σ (500 GeV) σQP(500 GeV)

1◦ < θ(l,beam) < 179◦
14.48(6) pb 14.48(6) pb 3.048(29) pb 3.034(28) pb

0.001◦ < θ(l,beam) < 179.999◦
60.16(12) nb 60.17(12) nb 47.42(12) nb 47.39(12) nb

0.000001◦ < θ(l,beam) < 179.999999◦
252.2(4) nb 252.1(4) nb 282.4(5) nb 284.1(5) nb

0◦ < θ(l,beam) < 180◦
– 302.3(5) nb – 404.5(7) nb

3.6. Use of new program options

All modifications described in this section can be easily controlled by a few new options which have been introduced in carlomat.f, 
the main routine of the code generation part of the program. Below we explain how they can be used and illustrate their effects with 
sample results in Section 3.5.

The use of the QP arithmetics is controlled with an option

iqprec=1 (yes)/else (no).

Compilation and computation of the generated MC kinematic routines might be very time consuming, therefore an option

ischnl=1 (yes, generate kinematics based on topologies of the Feynman diagrams)/2 (yes, generate kinematics taking into ac-
count poles due to Feynman propagators of intermediate bosons which decay into on shell final state particles, or of the top quark)/else 
(no)?

has been introduced which allows to change or discard generation of kinematic routines dedicated to integration of the s-channel peaks. 
Routines corresponding to ischnl=1 have been automatically generated for any user selected reaction in all former versions of the 
program. Note, however, that if ischnl=0 is chosen, then either of the two options igchnl, or itchnl, described below, must be set 
to a nonzero value, otherwise no kinematic routine will be generated and the program will be stopped.

Generation of kinematic routines dedicated to reactions with the t-channel photon or gluon exchange in reactions with two identical 
fermion-antifermion pairs, one in the initial state and the other in the final state, is controlled with an option

itchnl=1 (yes)/else (no).

Whether or not kinematics dedicated to a reaction of single photon or gluon radiation should be generated is controlled with an option

igchnl=1 (yes)/else (no).

It happens that the standard deviation of the MC integration becomes unexpectedly large just because the result of one particular iteration 
of Eqs. (11) substantially deviates from the results of all other iterations. Sometime the deviation is caused by just one or a few random 
events which due to numerical cancellations give unexpectedly large contribution to the integral. Therefore, an option has been introduced 
which allows to eliminate events whose contribution exceeds by more than a factor mxfctr the maximum of the cross section determined 
for all prior calls to the integrand in a given kinematic channel. It is specified with the assignment

mxfctr=1.d3

in carlocom.f of mc_computation. The actual value of mxfctr should be chosen empirically, such that the culprit-iteration is 
brought to the value not much different from other iterations. However, it is recommended to check by a comparison with the QP version 
of the program, if the rejected events do not influence much the result of the computation, say by more than one standard deviation of 
the MC integration.

To better control the MC integration process, a new option irand has been introduced both in carlocom.f and carlocom_mpi.f
of mc_computation that allows to choose between the intrinsic random number generator of the Fortran compiler and ranlux [22]. 
Another new option, iprind, allows to print results computed by individual processes which are run in the parallel version of the MC 
program.

3.7. Sample results

For the sake of illustration, we show below a sample of results obtained with the use of current version of carlomat and new 
options described in Section 3.4. The physical input parameters used in the computation are defined in module inprms in directory
mc_computation.

To demonstrate the use of the t-channel kinematics and potential necessity of the QP arithmetics we show in Table 1 the leading order 
(LO) cross sections of the reaction

e+e− → e+e−μ+μ− (27)
7
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Table 2
LO cross sections of reaction (30) at √s = 200 GeV and √s = 500 GeV for Eγ > 1 GeV and 
different angular cuts. Uncertainties of the last digits are given in parentheses.

Angular cuts σ(200 GeV) σ (500 GeV)

1◦ < θ(γ ,beam) < 179◦ , θ(γ , l) > 1◦ 7.42(2) fb 2.30(1) fb
1◦ < θ(γ ,beam) < 179◦ , θ(γ , l) > 0◦ 8.10(2) fb 2.66(1) fb
0◦ < θ(γ ,beam) < 180◦ , θ(γ , l) > 1◦ 14.95(4) fb 4.87(3) fb
0◦ < θ(γ ,beam) < 180◦ , θ(γ , l) > 0◦ 15.84(4) fb 5.34(3) fb

Table 3
LO cross sections (in fb) of reaction (30) at √s = 200 GeV and √s = 500 GeV for 1◦ < θ(γ , beam) < 179◦ , θ(γ , l) > 1◦
and Eγ > 1 GeV and corresponding numbers of calls to the integrand. �t1 (�t4) is the elapsed time of calculation of both 
σ(200 GeV) and σ(500 GeV) in a single core (4-cores) mode. Uncertainties of the last digits are given in parentheses.

ncores = 1 ncores = 4

�t1 σ(200 GeV)/N σ(500 GeV)/N �t4 σ(200 GeV)/N σ(500 GeV)/N

IFRNG 24′42′′ 7.467(35)/17.7M 2.282(20)/17.2M 6′19′′ 7.412(37)/17.9M 2.283(20)/17.1M
ranlux 25′18′′ 7.478(43)/17.8M 2.275(15)/17.4M 6′32′′ 7.447(44)/17.9M 2.295(22)/17.1M
IFRNG 241′26′′ 7.509(16)/178M 2.318(7)/172M 64′52′ 7.517(18)/178M 2.324(10)/173M
ranlux 246′34′′ 7.531(17)/177M 2.311(9)/172M 65′42′′ 7.497(19)/177M 2.305(8)/172M

at 
√

s = 200 GeV and 
√

s = 500 GeV for 4 different ranges of the lepton–beam angle θ(l, beam). We see that the cross sections σ and 
σQP calculated with the DP (iqprec=0) and QP (iqprec=1) arithmetics, respectively, agree well, i.e., within one standard deviation 
shown in parentheses as uncertainty of the last decimals, for 1◦ < θ(l, beam) < 179◦ and 0.001◦ < θ(l, beam) < 179.999◦ . The agreement 
is still satisfactory in the range 0.000001◦ < θ(l, beam) < 179.999999◦ at 

√
s = 200 GeV, but at 

√
s = 500 GeV, there is already quite some 

discrepancy between σ and σQP. This is due to a certain number of random events rejected in the computation of the DP cross section, 
as discussed in Section 3.3. Among other criteria introduced to eliminate events for which some kinematic variables because of numerical 
cancellations are driven out of their physical limits, the following conditions in the kinematic routine that maps away the t-channel poles 
of reaction (27) are imposed

t1 = (p1 − p3)
2 > tmax

1 = −m2
1

[
2 −

(
E3

E1
+ E1

E3

)]
⇒ d3nf−4Lips = 0, (28)

t2 = (p2 − p4)
2 > tmax

2 = −m2
2

[
2 −

(
E4

E2
+ E2

E4

)]
⇒ d3nf−4Lips = 0, (29)

where p1 (p3) is the four momentum of the initial (final) state positron and p2 (p4) is the four momentum of the initial (final) state 
electron. However, if there is no cut on θ(l, beam), conditions (28) and (29) are not enough any more and the DP precision cross sections 
σ become completely unreliable. Therefore they are not shown in Table 1.

Efficacy of kinematic routines dedicated to reactions of single photon radiation is illustrated in Table 2, where the cross sections of the 
reaction

e+e− → μ+μ−τ+τ−γ (30)

at 
√

s = 200 GeV and 
√

s = 500 GeV for Eγ > 1 GeV and with different cuts on the photon–beam and photon–lepton angles, θ(γ , beam)

and θ(γ , l) respectively, are shown. The QP results are not shown this time, as they are identical to those of the computation with DP 
arithmetics. The cross sections of reactions (27) and (30) agree well with those of ee4fγ [21], which in turn were thoroughly tested 
against results of programs by other authors, EXCALIBUR [23] and RacoonWW [24].

At this point, we would like to address the issue of computing time gain due to parallelization of the MC program. To this end the cross 
sections of the first row of Table 2 are recalculated with the MPI, once using 4 cores and the other time a single core only of a 4-core 
Intel i5-3470 3.2 GHz processor, which corresponds to setting n_cores:=4 and n_cores:=1, respectively, in a makefile mpi. The MC 
integration is performed in 10 iterations with nominally 2 × 106 or 2 × 107 calls to the integrand and it is repeated with two different 
random number generators: the intrinsic Fortran random number generator (IFRNG) and ranlux [22], corresponding to irand=1 and
irand=2 in carlocom_mpi.f. The cross sections are shown in Table 3 together with the actual number of calls to the integrand, 
i.e. after applying cuts and rejecting events being out of their allowed kinematical ranges. Also shown is the elapsed time �t1 (�t4) 
of calculation of both σ(200 GeV) and σ(500 GeV) in a single core (4-cores) mode. Note that �t1 is somewhat smaller than 4 × �t4, 
and the difference 4 × �t4 − �t1 is in a sense a measure of the non-parallelizable remnant of the program. The computing time can be 
further shortened if the s-channel kinematics is generated with an option ischnl=2 instead of ischnl=1 in carlomat.f. However, 
this particular option still needs more work before it becomes fully functional.

To further illustrate potential applications of the current version of carlomat, the LO cross sections of the following reactions

e+e− → e+e−π+π−, (31)

e+e− → e+e−π+π−γ , (32)

e+e− → e+e−μ+μ−π+π−, (33)

e+e− → e+e−μ+μ−π+π−γ (34)

e+e− → be+νeb̄e−ν̄e, (35)
8
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Table 4
LO cross sections of reactions (31)–(38) at √s = 200 GeV and √s = 500 GeV for 
the photon energy Eγ > 1 GeV and angular cuts of (39). Uncertainties of the last 
digits are given in parentheses.

Reaction σ(200 GeV) σ (500 GeV)

e+e− → e+e−π+π− 100.6(3) fb 21.7(1) fb
e+e− → e+e−π+π−γ 9.03(9) fb 2.33(4) fb
e+e− → e+e−μ+μ−π+π− 27.1(4) ab 7.72(12) ab
e+e− → e+e−μ+μ−π+π−γ 4.18(6) ab 1.47(3) ab
e+e− → be+νeb̄e−ν̄e 25.1(2) ab 6.734(8) fb
e+e− → be+νeb̄e−ν̄eγ 1.96(2) ab 1.559(4) fb
e+e− → e+e−μ+μ−τ+τ−π+π− 0.0078(1) ab 0.0034(1) ab
e+e− → e+e−μ+μ−τ+τ−π+π−γ 0.00168(5) ab 0.00085(4) ab

e+e− → be+νeb̄e−ν̄eγ , (36)

e+e− → e+e−μ+μ−τ+τ−π+π−, (37)

e+e− → e+e−μ+μ−τ+τ−π+π−γ (38)

at 
√

s = 200 GeV and 
√

s = 500 GeV for Eγ > 1 GeV and with the following angular cuts on the photon–beam θ(γ , beam), lepton–
beam θ(l, beam), pion–beam θ(π, beam), photon–lepton θ(γ , l), photon–pion θ(γ , π), lepton–pion θ(l, π) and lepton–lepton’ θ(l, l′), l 	= l′ , 
angles:

5◦ < θ(γ ,beam), θ(l,beam), θ(π,beam) < 175◦, θ(γ , l), θ(γ ,π), θ(l,π), θ(l, l′) > 5◦, (39)

are shown in Table 4, Predictions for reactions with the π+π−-pair in the final state, which are probably much more interesting at low 
energy e+e− colliders, have been derived here within a simple scalar QED model. Reactions (35) and (36) are interesting for investigating 
the top-quark pair production and decay in the e+e− collider. In the LO of SM in the unitary gauge and with the neglect of e+e−–Higgs 
boson coupling, they receive contributions from 1 306 and 11 124 Feynman diagrams, respectively. Note that reaction (36) at 

√
s = 500 GeV 

receives contributions from peaks due to t- and t̄-quark, W + and W − bosons exchanged in the s-channel, the t-channel peaks due to 
presence of e+e−-pair in the final state and the energy and collinear peaks due to the photon radiation. The small MC error of the 
corresponding cross section shows that the current version of carlomat is capable to handle all those peaks simultaneously. However, 
thorough tests of the results presented in Table 4 against programs by other authors [5–10] would require some dedicated effort and are 
beyond the scope of the present work. Some cross sections listed in Table 4 are so small that they are much below feasibility of any future 
collider project. They have been presented just to demonstrate the potential of carlomat in finding predictions for reactions with rather 
huge numbers of the Feynman diagrams, as e.g. reaction (38) which receives contributions from 262 920 Feynman diagrams in the LO. It 
should be noted that the cross sections of radiative reactions presented in Table 4, as well as those of Table 2, depend strongly on the 
photon energy cut. To cancel the dependence one should combine them with the O (α) virtual corrections to corresponding nonradiative 
reactions, which is beyond the scope of carlomat.

4. Summary

Announced already some time ago [25], a new version of the general purpose MC program carlomat that substantially improves 
efficiency of the phase space integration by automatic inclusion of parameterizations which map away the t-channel poles and peaks due 
to soft and collinear photon or gluon emission, has been presented. It also includes the QP versions of the routines for computation of 
the helicity amplitudes and phase-space parameterizations the calls to which have been implemented in the code generation part of the 
program. The QP arithmetics allows to control better numerical stability of computations performed with carlomat. Moreover, a new 
option of generating the s-channel kinematics, whose compilation and execution in the former versions of the program might be quite 
time consuming, has been added. The new s-channel kinematics is much shorter and hence speeds up both the compilation and execution 
time of the MC programs. The main routine of the MC computation part of the program has been supplemented with the MPI in order to 
allow for a parallel run on several processor cores.

As all former versions carlomat_4.0 is distributed as a single tar.gz archive carlomat_4.0.tgz which can be downloaded 
from the CPC Program Library or from http://kk.us .edu .pl /carlomat .html. All the necessary instructions for preparation and running of 
the program can be found in file instructions.pdf included in the distribution. We only note here that the MPI version of the MC 
program can be run with the command
make -f mpi mc,
where mpi is the corresponding makefile. The latter should be priorly edited and the variables at the top of it, which specify the number 
of processor cores, name of the Fortran compiler and compilation options, set to appropriate values, e.g.
n_cores:=2
FF=mpif90
FFLAGS=-O.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .cpc .2022 .108330.
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