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The current version of carlomat, a program for automatic computation of the lowest order cross
sections of multiparticle reactions, is described. The program can be used as the Monte Carlo generator
of unweighted events as well.

Program summary

Program title: carlomat
Catalogue identifier: AEDQ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEDQ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 101 613
No. of bytes in distributed program, including test data, etc.: 1 092 251
Distribution format: tar.gz
Programming language: Fortran 90/95
Computer: all
Operating system: Linux
Classification: 4.4, 11.2
Nature of problem: Description of two particle scattering reactions with possibly up to 10 particles in the
final state with a complete set of the Feynman diagrams in the lowest order of the Standard Model.
Solution method: The matrix element for a user specified process and phase space parametrizations,
which are necessary for the multichannel Monte Carlo integration of the lowest order cross sections
and event generation, are generated automatically. Both the electroweak and quantum chromodynamics
lowest order contributions are taken into account. Particle masses are not neglected in the program.
Matrix elements are calculated numerically with the helicity amplitude method. Constant widths of
unstable particles are implemented by modifying mass parameters in corresponding propagators.
Restrictions: The number of external particles is limited to 12. Only the Standard Model is implemented
at the moment in the program. No higher order effects are taken into account, except for assuming the
fine structure constant and the strong coupling at appropriate scale and partial summation of the one
particle irreducible loop corrections by introducing fixed widths of unstable particles.
Running time: Generation of the Fortran code with carlomat on a PC with the Pentium 4 3.0 GHz
processor for reactions with 8 particles in the final state relevant for the associated top quark pair and
Higgs boson production and decay takes about 10 minutes CPU time. This relatively long time of the
code generation is determined by a lot of write to and read from a disk commands which have to be
introduced in order to circumvent limitations of the Fortran compilers concerning possible array sizes.
The compilation time of generated routines depends strongly on a compiler used and an optimization
option chosen. Typically, for the reactions mentioned, it takes about one hour to compile all the routines
generated. Most of the time is used for the compilation of the kinematical routines. The execution time
of the Monte Carlo (MC) integration with about 2 million calls to the integrand amounts typically to a
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few hours and, if the MC summing over polarizations is employed, it is dominated by computation of the
phase space normalization.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Many interesting aspects of the Standard Model (SM) and models beyond it can be studied through investigation of reactions involving
a few heavy particles at a time whose observation becomes possible owing to the increasing collision energy and luminosity of particle
colliders, such as, e.g., the Large Hadron Collider (LHC), or the International Linear Collider (ILC) [1]. As the heavy particles are usually
unstable, they almost immediately decay leading to reactions with several light particles in the final state which receive contributions
typically from many thousands of Feynman diagrams already in the lowest order of SM. Although, in their overwhelming majority, those
diagrams constitute background to the “signal diagrams” of production and decay of the heavy particles one wants to investigate, they
must be all taken into account in reliable SM predictions for such reactions. This can be done practically only through a fully automated
calculational process.

To be more specific, let us consider, e.g., a reaction of associated production of a top quark pair and a Higgs boson at the ILC

e+e− → tt̄ H (1)

that can be used to measure the top–Higgs Yukawa coupling [2]. The top and antitop decay, even before they hadronize, predominantly
into bW + and b̄W − , respectively, the electroweak (EW) bosons subsequently decay into a fermion–antifermion pair each and the Higgs
boson, if it has mass mH < 140 GeV, which is favored by the direct searches at LEP and theoretical constrains in the framework of the SM,
decays mostly into a bb̄-quark pair. Thus, reaction (1) will actually be detected through reactions of the form

e+e− → bb̄bb̄ f1 f̄ ′
1 f2 f̄ ′

2, (2)

where f1, f ′
2 = νe, νμ,ντ , u, c and f ′

1, f2 = e−,μ−, τ−,d, s are the decay products of the W -bosons coming from decays of the t- and
t̄-quark. Except for 20 ‘signal’ Feynman diagrams of the associated production of a top quark pair and a Higgs boson the representatives
of which are depicted in Fig. 1, there are many other, typically O(104), off resonance background diagrams which contribute to any
of reactions (2). For example, taking into account both the EW and quantum chromodynamics (QCD) lowest order contributions in the
unitary gauge, neglecting of the Yukawa couplings of the fermions lighter than c quark and τ lepton, reactions

e+e− → bb̄bb̄τ+ντμ
−ν̄μ, (3)

e+e− → bb̄bb̄ud̄μ−ν̄μ, (4)

e+e− → bb̄bb̄us̄dc̄, (5)

e+e− → bb̄bb̄ud̄dū (6)

receive contributions from 21 214, 26 816 and 39 342 and 185 074 Feynman diagrams, respectively. To which extent the background con-
tributions may affect the associated production of the top quark pair and Higgs boson in some of the reactions listed above has been
discussed in [3].

Although there exists several multipurpose Monte Carlo (MC) generators such as HELAC/PHEGAS [4], AMEGIC++/Sherpa [5],
O’Mega/Whizard [6], MadGraph/MadEvent [7], ALPGEN [8], CompHEP/CalcHEP [9], or recently released Comix [10], three years
ago, when work on carlomat started, none of them was able to handle multiparticle reactions such as (3)–(5), not to mention reac-
tion (6). This situation has changed quite recently and now some of the publicly available MC generators, as e.g. O’Mega/Whizard or
HELAC/PHEGAS, are able to deliver complete SM predictions for reactions with 8 and more particles in the final state, including both
the EW and QCD contributions in the leading order. However, when first physics results obtained with carlomat, on the off resonance
background in (1) [3], were submitted for publication in spring 2008, they could only be partially checked against generators that were
publicly available then.

The main aim of carlomat, a new multipurpose program for automatic computation of the lowest order cross sections, is to provide
the reliable description of multiparticle reactions. This is a very challenging task, not only because of complicated matrix elements,
involving many thousands of the Feynman diagrams, but also because of the necessity of performing integration over a multidimensional
phase space. Not only may carlomat be useful for tests of the complicated calculations done with other, already well established,
generators. It may also offer the user other advantages, such as a relatively high speed of the MC computation, an easy control over
mappings of peaks in the integrand, a possibility of calculating polarized cross sections, or a possibility of easy hand made modifications
due to the use of traditional Feynman diagram approach. This write-up describes the current version of the program.

Fig. 1. Representative signal Feynman diagrams of reaction (2) in the unitary gauge. The remaining diagrams are obtained by all possible permutations of the two b and two
b̄ lines. The Higgs boson coupling to electrons has been neglected.
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Fig. 2. The topologies of a 4 particle process.

Table 1
No. of topologies for a given no. of particles.

No. of particles No. of topologies

6 220
7 2 485
8 34 300
9 559 405

10 10 525 900
11 224 449 225

2. Basics features of the program

carlomat is a program written in Fortran 90/95. It generates the matrix element for a user specified process and phase space
parametrizations which are later used for the multichannel MC integration of the lowest order cross sections and event generation. The
program takes into account both the EW and QCD lowest order contributions. Particle masses are not neglected in the program. The
number of external particles is limited to 12 and only the SM is currently implemented in the program.

carlomat works according to the following scheme. The user specifies the process he/she wants to have calculated. Then topologies
for a given number of external particles are generated and checked against Feynman rules which have been coded in the program. In this
process, helicity amplitudes, the color matrix and phase space parametrizations are generated. Finally, they are copied to another directory
where the numerical program can be executed.

2.1. Generation of topologies

Let us consider models with triple and quartic couplings. Generation of topologies starts with 4 topologies of a 4 particle process which
are depicted in Fig. 2. The 25 topologies of a 5 particle process are obtained by attaching line No. 5 to each line, including the internal
ones, and to each triple vertex of the graphs in Fig. 2. Particles Nos. 6, 7 and so on, are added recursively in the same way. The number of
topologies grows dramatically with the number of external particles as can be seen from Table 1. However, for a process with n external
particles, it is enough to generate topologies for n − 1 particles and then, while adding the nth particle, to check whether a topology
results in a Feynman diagram or not. Topologies can be generated and stored on a disk prior to the program execution.

2.2. Feynman diagrams

Actual initial and final state particles are assigned to lines 1,2,3, . . . ,n in a strict order. Each topology is divided into two parts which
are separately checked against the Feynman rules. While doing so, two, or three, external lines are joined by means of a triple, or quartic,
vertex of the implemented model, respectively. In this way a new off-shell particle is formed. Another particle is formed by adding either
the next external line, or an off-shell particle that has been already formed. At the stage of matrix element generation, such particles are
represented in carlomat by the derived data type called particle that is defined in the following way

type particle
integer :: wr,ct
integer :: k(4)
integer, pointer :: ip(:)
end type particle,

where

wr=1/0 if the particle has already/not yet been written to a file,
ct=1/3/8 for a color singlet/triplet/octet state,
k(1) the number of the vertex that has been used to form the particle,
k(2),k(3),k(4) the numbers of particles that have been joined in the vertex, with k(4)=0 for a triple vertex,
ip(:) a list of all the off-shell particles that have been used in the definition of the current particle.

In the routine for computation of the matrix element, the particles being fermions, vector bosons, or scalar bosons are represented by
spinors, polarization vectors, or just complex numbers, respectively.

The off-shell particles and/or external particles are joined in this way until the two parts of a considered topology are completely
covered. If they match into a propagator of the implemented model then the topology is accepted. Once the topology has been accepted,
the ‘longer’ part of it is further divided so that the Feynman diagram is made of 3 or 4 parts, joint to form a triple or quartic vertex of
the model. This reduces the number of different particles that must be defined for all the Feynman diagrams.

When the diagram is created, the corresponding particles are used to construct the helicity amplitude, color factor (matrix) and phase
space parametrization which are stored on the disk. Once all the topologies have been checked subroutines for calculating the matrix
element, color matrix and phase space integration are written.
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2.3. Helicity amplitudes

Routines for computing the helicity amplitudes have been collected in a separate directory named carlolib. Most of the routines in
carlolib had been already written for an MC program eett6f [11] for calculating lowest order cross sections of reactions e+e− →
6 fermions, relevant for tt̄-pair production and decay, but they have been improved and tailored to meet the needs of the automatic
generation of amplitudes in carlomat. In order to speed up the computation the MC summing over helicities has been implemented in
the program. To illustrate how it works let us consider a sum over two polarization states λ = ±1∑

λ=±1

M∗(λ)M(λ) =
∑

λ=±1

u†
a(λ)O†

a Obub(λ), (7)

where the polarized amplitude that depends on λ has been written as

M(λ) = Oaua(λ). (8)

In Eq. (8), u(λ) ≡ u(p, λ) is the spinor representing a particle or an antiparticle of momentum p and helicity λ/2, O stands for the rest of
amplitude M(λ) that does not depend on λ and a summation over the Dirac index a = 1,2,3,4 has been assumed. Now let us define the
spinor

w(α) = eiαu(+1) + e−iαu(−1), (9)

with α being a random number uniformly distributed in the interval [0,1]. Then the sum over polarizations can be replaced with the
integral

∑
λ=±1

M†(λ)M(λ) = 1

2π

2π∫
0

w†
a(α)O†

a Ob wb(α)dα. (10)

Indeed,

1

2π

2π∫
0

w†
a(α)O†

a Ob wb(α)dα = 1

2π

2π∫
0

(
e−iαu†

a(+1) + eiαu†
a(−1)

)
O†

a Ob
(
eiαub(+1) + e−iαu†

b(−1)
)

dα

= u†
a(+1)O†

a Obub(+1) + u†
a(−1)O†

a Obub(−1) =
∑

λ=±1

M†(λ)M(λ),

as
2π∫
0

e2iα dα =
2π∫
0

e−2iα dα = 0 and

2π∫
0

dα = 2π.

Analogously, a sum over three polarization states can be replaced with the integral according to

∑
λ=0,±1

M∗(λ)M(λ) = 1

2π

2π∫
0

ε∗
μ(α)Oμ † Oνεν(α)dα, (11)

where the longitudinal polarization component must be taken into account in the definition of ε(α)

ε(α) = ε(0) + eiαε(+1) + e−iαε(−1) (12)

in terms of the polarization four vectors ε(λ) ≡ ε(p, λ), λ = 0,±1, of a massive vector boson. Eq. (11) can be proven in exactly the same
way as Eq. (10).

Although random sampling over external helicities increases the dimension of the integral, by one for each helicity, it does not actually
spoil its convergence, as the dependence on α in (10) or (11) is rather smooth and the efficiency of the MC integration does not depend
very much on the dimension of the integral. This has been explicitly checked for a number of reactions e+e− → 4 fermions (γ ) whose
cross sections calculated with a program ee4fγ [12] that applies explicit summing over helicities have been successfully reproduced with
carlomat using the random sampling over external helicities.

An explicit summing over helicities is also possible. While doing so, spinors or polarization vectors representing particles, both the on-
and off-shell ones, are computed only once, for all the helicities of the external particles they are made of, and stored in arrays, which are
later used in the sum over polarizations.

Possible poles in the propagators of unstable particles are regularized by their constant widths which are introduced through the
complex mass parameters

M2
B = m2

B − imBΓB , B = W , Z , H, Mt =
√

m2
t − imtΓt , (13)

which replace masses in the corresponding propagators

�
μν
F (q) = −gμν + qμqν/M2

V

q2 − M2
V

,

�F (q) = 1

q2 − M2
, S F (q) = /q + Mt

q2 − M2
,

H t
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both in the s- and t-channels. Propagators of a photon and gluon are taken in the Feynman gauge. The EW mixing parameter may be
defined either to be real

sin2 θW = 1 − m2
W

m2
Z

, (14)

with physical values of the W and Z boson masses, or complex

sin2 θW = 1 − M2
W

M2
Z

, (15)

with M2
W and M2

Z given by Eq. (13). Using definitions (14), or (15), in the EW coupling constants is usually referred to as the fixed width
scheme (FWS), or the complex mass scheme (CMS) [13]. The color matrix is calculated only once at the beginning of execution of the
numerical program after having reduced its size with the use of the SU(3) algebra properties. The calculation is performed numerically
from the very definition, using the SU(3) structure constants and group generators in the fundamental representation [14].

2.4. Phase space integration

The integration over a multidimensional phase space is practically possible only with the use of Monte Carlo methods. A number of
approaches has been developed in the literature to reduce the variance of the integrand [15]. The multichannel MC approach that is used
in carlomat is described in this section.

A dedicated phase space parametrization is generated for each Feynman diagram of a process

p1 + p2 → p3 + · · · + pn (16)

with n external particles of four momenta pi , i = 1,2, . . . ,n, in the centre of mass system. The Lorentz invariant phase space element
of (16) is defined in a standard way

d3n f −4Lips = (2π)4δ(4)

(
p1 + p2 −

n∑
i=3

pi

)
n∏

i=3

dp3
i

(2π)32Ei
, (17)

where n f = n − 2 is the number of particles in the final state. The set of final state particles is divided, in a way that depends on a
topology of the diagram, into subsets consisting of two elements each, an element being either an external particle or a subset of particles
itself and use is made of the identity∫

dsi

∫
d3qi

2Ei
δ(4)(qi − qi1 − qi2 ) = 1, E2

i = si + q2
i .

Thus, Eq. (17) can be brought into the following form

d3n f −4Lips = (2π)4−3n f dl0 dl1 . . . dln−4 ds1 ds2 . . . dsn−4, (18)

where dli , i = 0,1, . . . ,n − 4, is a two particle phase space element given by

dli = λ
1
2 (si,q2

i1
,q2

i2
)

2
√

si
dΩi . (19)

In Eq. (19), λ is the kinematical function, qi1 and qi2 are the four momenta of each particle (subsystem of particles) in subset i, which are
defined in their relative centre of mass system, qi1 + qi2 = 0, Ωi is the solid angle of momentum qi1 and invariants si are given by

si =
{

(qi1 + qi2 )
2 = (Ei1 + Ei2 )

2, for i = 1, . . . ,n − 4,

(p1 + p2)
2 = s, for i = 0.

(20)

For processes with identical particles in the initial and final states, parametrization (18) must be slightly modified, by introducing the
corresponding t invariants in a proper way. This has not been implemented in the program yet. Therefore, one may expect worse conver-
gence of the MC integration when carlomat is used for such processes. The convergence is not much worse, however, if an angular cut
of a few degree on the angle between the identical particles in the initial and final states is imposed, which has been tested for several
reactions e+e− → 4 fermions and e+e− → 6 fermions with electrons and/or positrons in the final state.

Invariants si of Eq. (20) are randomly generated within their physical limits, smin
i and smax

i , which are automatically deduced from a
topology of the Feynman diagram. They can be generated either according to the uniform distribution

si = (
smax

i − smin
i

)
xi + smin

i , (21)

where xi denotes a random variable uniformly distributed in the interval [0,1], or, if necessary, mappings of the Breit–Wigner shape of the
propagators of unstable particles and ∼1/s behavior of the propagators of massless particles are performed. An option is included in the
program that allows to turn on the mapping if the particle decays into 2,3,4, . . . on-shell particles. Different phase space parametrizations
obtained in this way are important for testing purposes.

Phase space parametrizations (18) generated for each Feynman diagram

f i(x) = d3n f −4Lipsi(x), i = 1, . . . , N,
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with N being the number of the diagrams and x = (x1, . . . , x3n f −4) uniform random arguments, satisfy the normalization condition

1∫
0

dx3n f −4 f i(x) = 1. (22)

They are used to define a new multichannel probability distribution

f (x) =
N∑

i=1

ai f i(x), (23)

with non-negative weights ai , i = 1, . . . , N , satisfying the condition

N∑
i=1

ai = 1 (24)

which guaranties that the combined distribution f (x) is normalized if every distribution f i(x) satisfies normalization condition (22). The
actual MC integration is done with the random numbers generated according to probability distribution f (x). An option has been included
in the program that allows for reducing the actual number of kinematical channels used in the integration. It can be turned on by choosing
iopkch=1 in carlocom.f. Each kinematical channel is then called with the same set of random arguments x and of all the weights of
the channels with the same phase space normalization f i(x) only one weight is kept nonzero.

The integration is performed iteratively. The first iteration starts with all the nonzero weights ai equal to each other, or with the
weights determined in the initial scan of the integrand according to the following formula

ai = σi/

N∑
j=1

σ j, (25)

where σ j denotes the cross section obtained with the ith kinematical channel. An option has been included in the program that allows
to choose whether the weights should be determined anew according to Eq. (25) after every iteration, or a fraction of old weights, i.e.
determined in the scan or previous iterations, should be preserved and transfered to the next iteration. This is controlled by specifying
the fraction po in carlocom.f, as described in Section 3.2.

3. Description of the program

The two basic parts of the program which allow for a generation of the Fortran code and the MC computation of the cross section of
a user defined process are described in the following two subsections. The default values of the input parameters and options used in the
program are those specified below.

3.1. Fortran code generation

The part of the program that is responsible for generating routines necessary for the execution of the MC program is stored in a
directory code_generation. The main program is stored in a file carlomat.f. The user should specify the process he wants to have
calculated by giving a value to a character variable process in carlomat.f, e.g.

process=’e+ e- -> b b˜ mu+ vm d u˜ ’.

He may also choose the following options in carlomat.f:

Should the MC summing over polarizations be done, imcs=1 (yes)/else (no)?

imcs=1. Recommended for multiparticle reactions.

Take into account pure EW contributions only, iewk=1(yes)/else(no)?

iewk=0. Recommended; takes into account both QCD and EW contributions.

Discard the Higgs boson contributions, ihgs=1(yes)/else(no)?

ihgs=0. Recommended; Higgs boson contributions are taken into account.

Then the program calls two subroutines: readpart and genmat.

In readpart, the initial and final state particles are read from process. They are compared with the particles of the implemented
model stored in a file modpart.dat and assigned the necessary characteristics which will be used during execution of the program. If
all the particles match with particles in modpart.dat the possible interactions are read from a file vertices.dat. The numbers of
vertices of different kind should not exceed the corresponding maximum numbers specified in a module file maxvals.f. Except for the
maximum numbers of vertices:

nffb=48, the number of fermion–fermion–boson vertices,
nbbb=6, the number of triple boson vertices,

nbbbb=8, the number of quartic boson vertices.
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maxvals.f contains also values of other parameters which allow to control execution of the program:

ncol=3, the number of colors,
mxprt=100, the maximum number of particles in a model,
mxepl=12, the maximum number of external particles,

mxipl=100000, the maximum number of the off-shell particles which can be created,
mxvpl=4, the maximum number of similar vertices, such as uuγ , uu Z , uuh, or uug ,

mxncnt=20, the maximum number of continuation lines in a command,
mxcmdl=1000, the maximum number of lines in selected routines as, e.g., mdkk*.f, mmodkk*.f,
mxcmdb=20, the maximum number of blocks in selected routines as, e.g., kinkk*.f, relevant for the speed of their compilation,

mxmap=4, the maximum number of particles in a subsystem whose propagator should be mapped.

The module contains also the name of the current version of the program.
In genmat, topologies for the actual number of next external particles are generated, if the corresponding file containing pregenerated

topologies for n = next − 1 particles could not have been found in a directory code_generation. This is done by consecutive calls to
a subroutine gentop with the number of particles n = 4,5, . . . ,next. As long as n < next the topologies are being generated and stored
in a file named topoln.dat. When gentop is called for the last time, with n = next, each time a new topology is created by attaching
the last particle to a topology that was generated in the previous call and that has been now read from a file topoln-1.dat, another
subroutine checktop is called, which checks it against Feynman rules in a way described in Section 2.2. While doing so, the off-shell
particles are created which, if the topology has been accepted, are used to generate the helicity amplitudes, the color matrix and phase
space parametrizations for all the Feynman diagrams corresponding to the topology.

After all the topologies have been inspected, the following files necessary for a computation of the matrix element and phase space
integration are created and stored in the working directory.

• Modules:
partcls.f, containing information about the process, as, e.g., numbers of particles, diagrams, etc.,
umodkk.f, a collection of complex arrays representing spinors, polarization vectors and scalars which are the building blocks of
the diagrams,
hmodkk.f, a collection of integer arrays which determine a sequence of elements in arrays of umodkk, relevant if no MC summing
over polarizations is done,
pmodkk.f, a collection of particle four momenta,
mmodkk*.f, a collection of the amplitudes.

• Subroutines:
matrixel.f, the squared matrix element averaged (summed) over polarizations and colors of the initial (final) state particles,
mpol2.f, the polarized squared matrix element averaged (summed) over colors of the initial (final) state particles,
mtel*.f, a collection of calls to routines of carlolib which calculate building blocks of the Feynman diagrams,
mdkk*.f, a collection of calls to routines of carlolib which calculate amplitudes of the Feynman diagrams,
hsubkk.f, calculates integer arrays which determine a sequence of elements in arrays of umodkk, relevant if no MC summing
over polarizations is done,
colsqkk.f, calculates color factors,
kinkk*.f, a collection of mxcmdb different phase space parametrizations,
kincls.f, calls the kinematical routines kinkk* in order to generate the final state particle four momenta,
psnkk.f, calls phase space normalization routines psub*,
psub*.f, calls the kinematical routines kinkk* in order to calculate the phase space normalization.

• Parts of the code:
partcls.dat, some information about the external particle of the process, included in a subroutine parfixkk,
mtdr*.f, adds up the amplitudes which have the same color factors, included in a subroutine mpol2.

Once the execution of carlomat ends they are copied to another directory named mc_computation, where the MC program can be
executed.

3.2. MC computation

The part of the program that is responsible for the MC computation is stored in a directory mc_computation. The main program is
stored in a file carlocom.f. In the latter, the user should supply the following data:

The centre of mass energies

aecm=(/500.d0/),

for which the cross section should be computed together with a parameter

ne=1

being a size of the array aecm. If, for example, the program should run for 3 centre of mass energies: 500 GeV, 800 GeV and 1 TeV then
aecm=(/500.d0,800.d0,1.d3/) and ne=3. Moreover, the following options should be chosen in carlocom.f.
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Should the Born cross section be calculated, iborn=1(yes)/else(no), in niter iterations with ncalli calls per iteration, i.e.
with niter × ncalli calls?

iborn=1, recommended,
niter=10,
ncalli=10000.

The switch iborn has been introduced, since the implementation of the initial state radiation within the structure function approach
is envisaged. Its only meaningful value in the current version of the program is 1.

The fraction of old integration weights which should be transfered to the next iteration

po=0.d0, recommended value from 0 to 0.5.

If po=0.d0 then integrations weights ai are calculated anew according to Eq. (25) and it may happen that, because of a low weight
determined in the previous iteration, the ith channel will not be selected resulting in ai = 0 for the next iteration. Thus the number of
kinematical channels used in the next iterations will be effectively reduced.

Generate the unweighted events, imc<0(no)/else(yes)?

imc=2.

The probability distribution according to which the momenta of the final state particles are generated is limited either by the maximum
of the total cross section, for imc=0, or, for imc=1,2,... , by the maxima of the cross section in each bin of distribution No. imc. See
discussion of an option idis below.

Should the Born cross section be scanned with nscan0 calls, iscan0=1(yes)/else(no)?

iscan0=1,
nscan0=10.

If iscan0=1 then each kinematical channel is called with the same weight equal to 1/ntot
kin, where ntot

kin is the total number of the channels,
and the cross section is calculated with nscan0 calls. The value of the cross section is later used to calculate the weight, according to
Eq. (25), with which that particular channel will contribute to the integral in the first iteration.

Should the number of kinematical channels be optimized, iopkch=1(yes)/else(no)?

iopkch=0, for processes with large number of the Feynman diagrams iopkch=1 is recommended.

Discard kinematical channels which contribute less than qw of the dominant channel in the initial scan.

qw=0.0d0. No channels are discarded; recommended.

Choose the scheme, ischeme=1(complex mass scheme)/else(fixed width scheme), see Eqs. (14) and (15) for the expla-
nation,

ischeme=1.

Should distributions be calculated, idis=1(yes)/0(no)?

idis=1.

Variables, in which the distributions are to be calculated, the number of bins, etc., should be defined in a file calcdis.f.

Should cuts be imposed, icuts=1(yes)/0(no)?

icuts=1.

The cuts which can be controlled from the main program carlocom currently include

• angles: θ(l,beam), θ(q,beam), θ(g,beam), θ(a,beam), θ(a, l), θ(a,q), θ(q,q′), θ(l,q), θ(l,g), θ(l, l′),
• energies: E l , Eq, Eb, Eg, Ea,
• invariant masses: mll′ , mqq′ , mbb′ , mjj′ ,

where l, l′ are charged leptons, q,q′ are quarks, b is a b-quark, g is a gluon, a is a photon and j is either a quark or a gluon.
The initial physical parameters: particle masses and widths, an inverse of the fine structure constant in the Thomson limit α, the Fermi

coupling, the strong coupling constant αs , number of colors and the conversion constant can be specified in module inprms.f. The
module contains one more input parameter called sqscut that is an invariant mass cut, which is used in mappings of the photon and
gluon propagators that couple to massless fermions. Its value is relevant only if light fermion masses are chosen to be zero. If the width
of the W boson, Higgs boson, or top quark is set to zero then the program will automatically replace it with a value calculated in the
lowest order of SM.

The helicity amplitudes are calculated with the use of the routines which have been collected in a directory carlolib. The di-
rectory contains also other routines as boost, kinff, kinin, lamsq, mapakk, mapbkk, mapskk, which are used in the phase space
calculation, wwidth, a routine for calculating the W -boson width in the lowest order of SM, or a random number generator ranlux [16].
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4. Use of the program

At present carlomat is distributed as a single file carlomat.tar.gz. After executing command

tar -xzvf carlomat.tar.gz

a working directory named carlomat with a few subdirectories is formed. The part of the program responsible for code generation is
stored in subdirectory code_generation. After having specified a desired process in carlomat.f it can be run with a command

make test

executed in a command line in directory code_generation. Once ended, a file test is displayed on the screen that contains some
details of the process under consideration, such as the external and off-shell particles, the number of Feynman diagrams, etc. and the
generated files listed in Section 3.1 are moved to another working directory, named mc_computation, to which the user should change
in order to perform the MC computation. After specifying the c.m.s. energy and the desired options in carlocom.f the MC program can
be run by executing a command

make test.

The output of the run is stored in a file test. Both files named test, the one in a directory code_generation and the other in
mc_computation should exactly reproduce files test0 appended to both directories. If the MC events generation is turned on, i.e. for
imc=0,1,2,3,..., then the generated events are stored in a file mc_events.x, with x being the c.m.s. energy. The data for each
event are stored in mc_events.x in the following form:

# Event No. 1

p( 3)= 0.47046555E+02 −0.10891034E+02 0.42906506E+02 0.15190637E+02
p( 4)= 0.12373166E+03 0.59317748E+02 0.19678931E+02 0.10668003E+03
p( 5)= 0.25869511E+02 0.21415118E+02 −0.37079632E+01 −0.14030830E+02
p( 6)= 0.17716225E+03 −0.40997709E+02 0.81425324E+01 −0.17216082E+03
p( 7)= 0.65263801E+02 −0.52555950E+02 −0.20628053E+02 0.32737122E+02
p( 8)= 0.60926224E+02 0.23711829E+02 −0.46391953E+02 0.31583866E+02

where p(3),...,p(8) are four momenta of the final state particles in the centre of mass system in exactly the same order as they
appear in process. The first component is the energy and the other 3 components are the x, y and z components of the four mo-
mentum. The number of accepted events substantially increases when the program is run the second time with exactly the same choice
of options and parameters. In each run, the maximum values of the cross section are stored in a file named csmax_* in directory
mc_computation and they are automatically read from the disc in the next run of the program. The efficiency of events acceptance is
not high, but it can be improved by a proper selection of the differential cross section and an appropriate choice of the number of bins.

5. Outlook

The following improvements of the program are envisaged in the near future.

• Dedicated treatment of soft and collinear external photons, as well as t-channel photon/gluon exchange.
• Interfaces to parton density functions, or the initial state radiation within the structure function approach.
• More efficient calculation of color coefficients.

Moreover, interfaces to parton shower and hadronization programs should be worked on. Extensions of SM can be implemented and the
corresponding lowest order cross sections can be calculated in a fully automatic way. Leading SM radiative corrections can be implemented,
if the necessary subroutines are provided.
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